Glaze库与RapidJSON性能对比分析
2025-07-08 18:01:32作者:彭桢灵Jeremy
在C++生态系统中,JSON处理库的性能一直是开发者关注的焦点。本文通过实际测试数据,对比分析了Glaze和RapidJSON这两个流行JSON库在序列化性能方面的表现,并探讨了性能测试中的关键注意事项。
测试环境与配置
测试平台为MacOS 14系统,搭载M2 Pro芯片,使用GCC 14.1编译器,编译选项为Release模式。测试对象为一个简单的结构体,包含整型和字符串类型字段。
性能测试方法
正确的性能测试方法对于获得准确结果至关重要。初始测试中,RapidJSON的测试代码存在一个常见误区——序列化操作被放在了循环外部,导致实际上只测试了缓冲区访问的性能而非真正的序列化性能。
正确的测试方法应当将完整的序列化过程包含在循环体内:
// RapidJSON正确测试方法
for (auto i = 0; i < iterations; i++) {
rapidjson::StringBuffer buf;
rapidjson::Writer<rapidjson::StringBuffer> writer(buf);
writer.StartObject();
writer.Key("id"); writer.Int(s.i);
writer.Key("name"); writer.String(s.hello.c_str());
writer.EndObject();
auto str = buf.GetString();
}
// Glaze正确测试方法
std::string buffer;
for (auto i = 0; i < iterations; i++) {
glz::write_json(s, buffer);
}
性能对比结果
经过正确配置的测试显示:
- 对于简单结构体的序列化,RapidJSON和Glaze都表现出极高的性能,处理时间都在纳秒级别
- Glaze在测试中展现了与RapidJSON相当甚至更优的性能表现
- 当处理更大、更复杂的JSON对象时,Glaze的性能优势可能更加明显
性能优化建议
对于追求极致性能的场景,开发者可以考虑以下优化策略:
- 缓冲区复用:如Glaze示例中所示,复用std::string缓冲区可以避免重复内存分配
- 足够大的迭代次数:建议至少进行100,000次迭代以获得稳定的测试结果
- SIMD优化:现代JSON库如Glaze利用SIMD指令集加速处理
- 二进制格式:对于纯性能敏感场景,可以考虑使用Glaze提供的BEVE二进制格式替代JSON
与其他序列化方案的对比
测试中还对比了Protocol Buffers(protobuf)的性能表现。结果显示:
- 在C++环境中,性能优化的JSON库可以达到与protobuf相近的性能
- protobuf的二进制格式在跨语言场景下仍具有优势
- Glaze提供的BEVE二进制格式在特定场景下可能比protobuf更具性能优势
结论
JSON库的性能测试需要严谨的方法论支撑。Glaze作为一个现代C++ JSON库,在正确使用的情况下能够提供与RapidJSON媲美甚至更优的性能表现。开发者应根据实际应用场景、数据结构复杂度以及对跨平台/跨语言支持的需求,选择合适的序列化方案。
对于追求极致性能的C++应用,Glaze不仅提供了高性能的JSON处理能力,还通过BEVE二进制格式为开发者提供了额外的性能优化选择。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
858
509

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
257
300

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
331
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
397
370

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
22
5