Glaze库与RapidJSON性能对比分析
2025-07-08 18:01:32作者:彭桢灵Jeremy
在C++生态系统中,JSON处理库的性能一直是开发者关注的焦点。本文通过实际测试数据,对比分析了Glaze和RapidJSON这两个流行JSON库在序列化性能方面的表现,并探讨了性能测试中的关键注意事项。
测试环境与配置
测试平台为MacOS 14系统,搭载M2 Pro芯片,使用GCC 14.1编译器,编译选项为Release模式。测试对象为一个简单的结构体,包含整型和字符串类型字段。
性能测试方法
正确的性能测试方法对于获得准确结果至关重要。初始测试中,RapidJSON的测试代码存在一个常见误区——序列化操作被放在了循环外部,导致实际上只测试了缓冲区访问的性能而非真正的序列化性能。
正确的测试方法应当将完整的序列化过程包含在循环体内:
// RapidJSON正确测试方法
for (auto i = 0; i < iterations; i++) {
rapidjson::StringBuffer buf;
rapidjson::Writer<rapidjson::StringBuffer> writer(buf);
writer.StartObject();
writer.Key("id"); writer.Int(s.i);
writer.Key("name"); writer.String(s.hello.c_str());
writer.EndObject();
auto str = buf.GetString();
}
// Glaze正确测试方法
std::string buffer;
for (auto i = 0; i < iterations; i++) {
glz::write_json(s, buffer);
}
性能对比结果
经过正确配置的测试显示:
- 对于简单结构体的序列化,RapidJSON和Glaze都表现出极高的性能,处理时间都在纳秒级别
- Glaze在测试中展现了与RapidJSON相当甚至更优的性能表现
- 当处理更大、更复杂的JSON对象时,Glaze的性能优势可能更加明显
性能优化建议
对于追求极致性能的场景,开发者可以考虑以下优化策略:
- 缓冲区复用:如Glaze示例中所示,复用std::string缓冲区可以避免重复内存分配
- 足够大的迭代次数:建议至少进行100,000次迭代以获得稳定的测试结果
- SIMD优化:现代JSON库如Glaze利用SIMD指令集加速处理
- 二进制格式:对于纯性能敏感场景,可以考虑使用Glaze提供的BEVE二进制格式替代JSON
与其他序列化方案的对比
测试中还对比了Protocol Buffers(protobuf)的性能表现。结果显示:
- 在C++环境中,性能优化的JSON库可以达到与protobuf相近的性能
- protobuf的二进制格式在跨语言场景下仍具有优势
- Glaze提供的BEVE二进制格式在特定场景下可能比protobuf更具性能优势
结论
JSON库的性能测试需要严谨的方法论支撑。Glaze作为一个现代C++ JSON库,在正确使用的情况下能够提供与RapidJSON媲美甚至更优的性能表现。开发者应根据实际应用场景、数据结构复杂度以及对跨平台/跨语言支持的需求,选择合适的序列化方案。
对于追求极致性能的C++应用,Glaze不仅提供了高性能的JSON处理能力,还通过BEVE二进制格式为开发者提供了额外的性能优化选择。
登录后查看全文
热门项目推荐
- QQwen3-Next-80B-A3B-InstructQwen3-Next-80B-A3B-Instruct 是一款支持超长上下文(最高 256K tokens)、具备高效推理与卓越性能的指令微调大模型00
- QQwen3-Next-80B-A3B-ThinkingQwen3-Next-80B-A3B-Thinking 在复杂推理和强化学习任务中超越 30B–32B 同类模型,并在多项基准测试中优于 Gemini-2.5-Flash-Thinking00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0265cinatra
c++20实现的跨平台、header only、跨平台的高性能http库。C++00AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02- HHunyuan-MT-7B腾讯混元翻译模型主要支持33种语言间的互译,包括中国五种少数民族语言。00
GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile06
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
最新内容推荐
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K

deepin linux kernel
C
22
6

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
192
273

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
923
551

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
421
392

openGauss kernel ~ openGauss is an open source relational database management system
C++
145
189

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
74
64

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.3 K

Elasticsearch
国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8