首页
/ AWS Deep Learning Containers发布TensorFlow 2.18.0训练镜像

AWS Deep Learning Containers发布TensorFlow 2.18.0训练镜像

2025-07-07 06:25:28作者:冯梦姬Eddie

AWS Deep Learning Containers(DLC)是亚马逊云科技提供的一组经过优化的深度学习容器镜像,这些镜像预装了流行的深度学习框架、库和工具,可以帮助开发者快速部署和运行深度学习工作负载。这些容器镜像针对AWS基础设施进行了优化,支持CPU和GPU加速,并且与Amazon EC2、Amazon ECS、Amazon EKS等服务无缝集成。

近日,AWS Deep Learning Containers项目发布了TensorFlow 2.18.0的训练镜像更新,为开发者提供了最新的TensorFlow框架支持。这次更新包含了针对不同硬件配置优化的多个镜像版本,下面我们将详细介绍这些新发布的镜像及其特性。

TensorFlow 2.18.0 CPU版本镜像

基于Ubuntu 22.04操作系统,该CPU版本镜像预装了Python 3.10环境,专为在Amazon EC2实例上运行TensorFlow训练任务而优化。镜像中包含了TensorFlow 2.18.0框架及其相关依赖库,如NumPy 2.0.2、SciPy 1.15.1、h5py 3.12.1等数据处理库,以及OpenCV 4.11.0.86等计算机视觉库。

该镜像还包含了MPI支持(mpi4py 4.0.1),便于在多节点环境中进行分布式训练。对于开发者工具,镜像预装了AWS CLI 1.37.5和botocore 1.36.5,方便与AWS服务进行交互。此外,还包含了常用的开发工具如Emacs编辑器。

TensorFlow 2.18.0 GPU版本镜像

GPU版本镜像同样基于Ubuntu 22.04和Python 3.10环境,但针对NVIDIA GPU进行了特别优化。该镜像支持CUDA 12.5和cuDNN 9,包含了NCCL库以支持多GPU通信,能够充分发挥GPU硬件的计算能力。

在深度学习框架方面,GPU版本镜像与CPU版本保持一致的TensorFlow 2.18.0版本,确保了代码在不同硬件环境中的一致性。同样包含了NumPy、SciPy、OpenCV等科学计算和图像处理库,以及AWS CLI等开发工具。

技术特点与优势

  1. 性能优化:这些镜像针对AWS EC2实例进行了深度优化,能够充分发挥底层硬件的计算能力,特别是GPU版本对NVIDIA显卡的支持。

  2. 环境一致性:通过容器化技术,确保了训练环境在不同部署场景下的一致性,避免了"在我机器上能运行"的问题。

  3. 开箱即用:预装了完整的深度学习工具链,开发者无需花费时间在环境配置上,可以立即开始模型训练工作。

  4. 安全稳定:基于Ubuntu 22.04 LTS操作系统,提供长期支持,并定期更新安全补丁。

  5. 多版本支持:同时提供CPU和GPU版本,满足不同计算需求。

适用场景

这些TensorFlow训练镜像特别适合以下场景:

  • 需要在AWS云上快速部署TensorFlow训练环境的团队
  • 希望避免复杂环境配置的机器学习工程师
  • 需要保证训练环境一致性的分布式训练项目
  • 需要同时支持CPU和GPU训练的混合部署场景

总结

AWS Deep Learning Containers项目发布的TensorFlow 2.18.0训练镜像,为开发者提供了高效、稳定的深度学习训练环境。无论是CPU还是GPU版本,都经过了精心优化和测试,能够帮助开发者专注于模型开发而非环境配置。这些镜像的发布进一步丰富了AWS的机器学习生态系统,为各类深度学习应用提供了坚实的基础设施支持。

登录后查看全文
热门项目推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
197
2.17 K
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
208
285
pytorchpytorch
Ascend Extension for PyTorch
Python
59
94
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
974
574
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
ops-mathops-math
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
549
81
openHiTLSopenHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399
communitycommunity
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
393
27
MateChatMateChat
前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。 官网地址:https://matechat.gitcode.com
1.2 K
133