ArmNN SDK v25.02 版本深度解析与特性详解
项目概述
ArmNN 是 Arm 公司推出的神经网络推理引擎,专为机器学习工作负载优化设计。作为连接机器学习框架与 Arm 处理器的桥梁,ArmNN 提供了高效的神经网络模型执行能力,支持多种主流机器学习框架的模型格式,能够在 Arm Cortex-A、Cortex-M 和 Mali GPU 等处理器上实现高性能推理。
版本核心更新
关键错误修复
本次 v25.02 版本针对 TosaRef 后端进行了多项重要修复:
-
运算符映射修复:解决了 LeakyRelu、Quantize、Stack 和 Dequantize 等关键运算符在 TosaRef 后端中的映射问题,提升了模型转换的准确性和兼容性。
-
架构重构优化:对 TosaRef 后端进行了全面的重构,修复了多个运算符的实现问题,显著提升了后端稳定性和执行效率。
-
切片操作修正:修复了 TosaRef 中 Strided Slice 操作的错误,确保了张量切片操作的正确性。
-
模型检测增强:改进了 TfLite Turbo 模型的检测机制,能够更准确地识别和优化这类模型。
-
子图安全验证:在 Neon 和 CL 后端中增加了激活函数融合前的子图验证检查,防止了跨子图的不安全融合操作。
移除的功能特性
为简化代码库和优化维护成本,本版本移除了以下功能组件:
-
异步执行接口:移除了完整的异步 API 实现,包括 IWorkingMemHandle 和 IAsyncExecutionCallback 等核心接口类。
-
Python 绑定:移除了 PyArmNN Python 接口支持,专注于核心 C++ 实现。
-
支持库组件:移除了 Shim 层和支持库实现,精简了代码结构。
-
范围追踪工具:移除了 RangeTracker 类及其相关功能。
重要 API/ABI 变更
v25.02 版本包含了重大的 API 变更,版本号升级至 35.0.0(遵循语义化版本规范)。开发者需要特别注意以下变更点:
-
异步执行相关接口移除:
- 删除了 IWorkingMemHandle 和 IAsyncExecutionCallback 接口类
- 移除了 INetworkProperties 中的 m_AsyncEnabled 标志
- 删除了 IRuntime 接口中的 4 个异步执行相关方法
-
线程池组件移除:
- 完整移除了 Threadpool 类及其所有成员函数
- 移除了与工作内存句柄管理相关的接口
构建环境要求
v25.02 版本对构建工具链和依赖库提出了明确要求:
核心工具链
- Git:2.17.1 或更高版本
- SCons:Ubuntu 2.4.1 / Debian 2.5.1
- CMake:最低 3.22.1 版本
框架支持
- TensorFlow:2.15.0 版本
- ONNX:1.6.0 版本
- Flatbuffer:23.5.26 版本
- Protobuf:3.12.0 版本
关键依赖库
- Android NDK:r26b 版本
- 数学计算库:Gemmlowp(特定提交版本)
- 工具库:包括 cxxopts、doctest、fmt 等均有明确版本要求
技术影响与升级建议
-
迁移注意事项:
- 使用过异步 API 的应用需要重构为同步执行模式
- Python 用户需要寻找替代方案或考虑直接使用 C++ 接口
- 检查构建系统是否满足新版依赖要求
-
性能优化方向:
- TosaRef 后端的稳定性提升为量化模型带来更好的支持
- 子图验证机制增强了优化过程的安全性
-
长期维护价值:
- 精简后的代码库更易于维护和扩展
- 明确的版本依赖降低了环境配置复杂度
对于计划升级的用户,建议:
- 全面测试现有模型的推理准确性
- 评估异步接口移除对应用架构的影响
- 检查构建系统配置是否符合新版要求
- 考虑性能基准测试以验证优化效果
ArmNN v25.02 通过精简架构和修复关键问题,为开发者提供了更稳定、高效的神经网络推理解决方案,是追求长期稳定性的项目的理想选择。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00