HFTBacktest项目中LOCAL_EVENT与EXCH_EVENT机制解析
2025-06-30 08:11:43作者:薛曦旖Francesca
事件处理机制概述
在HFTBacktest高频交易回测框架中,事件处理系统采用了独特的双时间戳机制,通过LOCAL_EVENT和EXCH_EVENT两种标志来区分不同类型的事件处理流程。这一设计解决了高频交易环境中常见的网络延迟和事件顺序不一致问题。
核心概念解析
本地事件(LOCAL_EVENT)
LOCAL_EVENT标志的事件表示需要在本地处理器处理的交易事件。这类事件具有以下特点:
- 使用本地时间戳(local_ts)进行排序和处理
- 代表交易系统本地观测到的事件
- 处理顺序基于本地接收时间而非交易平台实际发生时间
平台事件(EXCH_EVENT)
EXCH_EVENT标志的事件表示需要在交易平台处理器处理的交易事件。其特征包括:
- 使用平台时间戳(exch_ts)进行排序和处理
- 代表交易平台实际发生的事件
- 处理顺序基于平台实际发生时间而非本地接收时间
设计原理与必要性
高频交易环境中,网络延迟和消息传输顺序的不确定性会导致本地观测到的事件顺序与平台实际发生顺序不一致。HFTBacktest通过以下方式解决这一问题:
- 双时间戳机制:每个事件同时记录本地接收时间(local_ts)和平台发生时间(exch_ts)
- 事件复制:数据转换工具会将原始事件复制为两个版本,分别标记为LOCAL_EVENT和EXCH_EVENT
- 独立排序:LOCAL_EVENT事件按local_ts排序处理,EXCH_EVENT事件按exch_ts排序处理
实际应用场景
假设一个高频交易系统观察到以下事件序列:
- 平台实际顺序:订单A成交(exch_ts=100) → 订单B成交(exch_ts=101)
- 由于网络延迟,本地接收顺序:订单B成交(local_ts=200) → 订单A成交(local_ts=201)
在这种情况下,HFTBacktest会:
- 为订单A创建两个事件:
- LOCAL_EVENT版本(local_ts=201)
- EXCH_EVENT版本(exch_ts=100)
- 为订单B创建两个事件:
- LOCAL_EVENT版本(local_ts=200)
- EXCH_EVENT版本(exch_ts=101)
这样,本地处理器会按200→201的顺序处理订单B和A,而平台处理器会按100→101的顺序处理订单A和B,确保了两边都能获得正确的事件序列。
实现细节
在HFTBacktest的Rust实现中,这两种事件类型通过枚举和标志位来区分。处理器会根据事件类型决定使用哪个时间戳进行排序和处理,确保回测结果的准确性。这种设计使得回测系统能够更真实地模拟实际高频交易环境中的各种复杂情况。
总结
HFTBacktest的LOCAL_EVENT和EXCH_EVENT机制是其核心设计之一,有效解决了高频交易回测中的事件顺序问题。通过这种双时间戳、双处理流的架构,系统能够更精确地模拟真实交易环境中的各种场景,为策略开发者提供更可靠的测试平台。理解这一机制对于正确使用HFTBacktest框架和开发高质量的高频交易策略至关重要。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C086
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0137
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
LabVIEW串口通信开发全攻略:从入门到精通的完整解决方案 操作系统概念第六版PDF资源全面指南:适用场景与使用教程 谷歌浏览器跨域插件Allow-Control-Allow-Origin:前端开发调试必备神器 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 MQTT客户端软件源代码:物联网开发的强大工具与最佳实践指南 STM32到GD32项目移植完全指南:从兼容性到实战技巧 中兴e读zedx.zed文档阅读器V4.11轻量版:专业通信设备文档阅读解决方案
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
472
3.49 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
213
86
暂无简介
Dart
719
173
Ascend Extension for PyTorch
Python
278
314
React Native鸿蒙化仓库
JavaScript
286
333
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
848
432
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.27 K
696
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19