HFTBacktest项目中LOCAL_EVENT与EXCH_EVENT机制解析
2025-06-30 20:51:23作者:薛曦旖Francesca
事件处理机制概述
在HFTBacktest高频交易回测框架中,事件处理系统采用了独特的双时间戳机制,通过LOCAL_EVENT和EXCH_EVENT两种标志来区分不同类型的事件处理流程。这一设计解决了高频交易环境中常见的网络延迟和事件顺序不一致问题。
核心概念解析
本地事件(LOCAL_EVENT)
LOCAL_EVENT标志的事件表示需要在本地处理器处理的交易事件。这类事件具有以下特点:
- 使用本地时间戳(local_ts)进行排序和处理
- 代表交易系统本地观测到的事件
- 处理顺序基于本地接收时间而非交易平台实际发生时间
平台事件(EXCH_EVENT)
EXCH_EVENT标志的事件表示需要在交易平台处理器处理的交易事件。其特征包括:
- 使用平台时间戳(exch_ts)进行排序和处理
- 代表交易平台实际发生的事件
- 处理顺序基于平台实际发生时间而非本地接收时间
设计原理与必要性
高频交易环境中,网络延迟和消息传输顺序的不确定性会导致本地观测到的事件顺序与平台实际发生顺序不一致。HFTBacktest通过以下方式解决这一问题:
- 双时间戳机制:每个事件同时记录本地接收时间(local_ts)和平台发生时间(exch_ts)
- 事件复制:数据转换工具会将原始事件复制为两个版本,分别标记为LOCAL_EVENT和EXCH_EVENT
- 独立排序:LOCAL_EVENT事件按local_ts排序处理,EXCH_EVENT事件按exch_ts排序处理
实际应用场景
假设一个高频交易系统观察到以下事件序列:
- 平台实际顺序:订单A成交(exch_ts=100) → 订单B成交(exch_ts=101)
- 由于网络延迟,本地接收顺序:订单B成交(local_ts=200) → 订单A成交(local_ts=201)
在这种情况下,HFTBacktest会:
- 为订单A创建两个事件:
- LOCAL_EVENT版本(local_ts=201)
- EXCH_EVENT版本(exch_ts=100)
- 为订单B创建两个事件:
- LOCAL_EVENT版本(local_ts=200)
- EXCH_EVENT版本(exch_ts=101)
这样,本地处理器会按200→201的顺序处理订单B和A,而平台处理器会按100→101的顺序处理订单A和B,确保了两边都能获得正确的事件序列。
实现细节
在HFTBacktest的Rust实现中,这两种事件类型通过枚举和标志位来区分。处理器会根据事件类型决定使用哪个时间戳进行排序和处理,确保回测结果的准确性。这种设计使得回测系统能够更真实地模拟实际高频交易环境中的各种复杂情况。
总结
HFTBacktest的LOCAL_EVENT和EXCH_EVENT机制是其核心设计之一,有效解决了高频交易回测中的事件顺序问题。通过这种双时间戳、双处理流的架构,系统能够更精确地模拟真实交易环境中的各种场景,为策略开发者提供更可靠的测试平台。理解这一机制对于正确使用HFTBacktest框架和开发高质量的高频交易策略至关重要。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
185
196
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
623
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210