Cheshire Cat AI 核心项目中的文本分块技术解析
2025-06-29 16:44:15作者:舒璇辛Bertina
概述
在RAG(检索增强生成)系统中,文本分块(Chunking)是一个基础而关键的技术环节。Cheshire Cat AI核心项目通过灵活的钩子(hook)机制,为开发者提供了高度可定制的文本分块解决方案。
文本分块的重要性
文本分块技术决定了如何将大段文本分割成适合模型处理的小块。合理的分块策略直接影响着RAG系统的性能表现:
- 过大的分块可能导致信息冗余和检索效率低下
- 过小的分块可能破坏语义连贯性
- 分块重叠(overlap)的设置影响上下文信息的保留程度
Cheshire Cat的分块机制演进
项目最初采用基于字符的分块策略,但开发者很快意识到需要更灵活的解决方案。经过讨论,团队决定通过钩子机制提供自定义分块能力。
核心钩子实现
项目提供了两个关键钩子来控制文本分块过程:
1. 分块配置钩子
@hook
def rabbithole_instantiates_splitter(text_splitter: TextSplitter, cat) -> TextSplitter:
# 示例:修改分块大小和重叠量
text_splitter._chunk_size = 64
text_splitter._chunk_overlap = 8
return text_splitter
这个钩子允许开发者在分块器实例化时修改其参数,包括:
- 分块大小(chunk_size)
- 分块重叠量(chunk_overlap)
2. 预处理钩子
@hook
def before_rabbithole_splits_text(docs: List[Document], cat) -> List[Document]:
# 在此处对文档进行预处理
return docs
此钩子在分块前执行,开发者可以在此对原始文档进行预处理操作。
技术实现细节
- 分块器类型:项目默认使用递归字符文本分块器,但通过钩子可以替换为其他分块策略
- 参数控制:开发者可以动态调整分块大小和重叠量,无需修改核心代码
- 预处理能力:在分块前对文档进行清洗、格式化等操作
最佳实践建议
- 对于技术文档,建议使用较小的分块(128-256字符)和中等重叠(16-32字符)
- 对于文学性内容,可适当增大分块大小(512+字符)以保持上下文连贯
- 针对不同文档类型,可通过条件判断设置不同的分块参数
总结
Cheshire Cat AI通过灵活的钩子机制,为文本分块提供了高度可定制的解决方案。这种设计不仅保留了默认实现的简洁性,也为高级用户提供了充分的扩展空间,是RAG系统设计中值得借鉴的架构模式。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++043Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0289Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp课程页面空白问题的技术分析与解决方案2 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析3 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析4 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 5 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析6 freeCodeCamp Cafe Menu项目中link元素的void特性解析7 freeCodeCamp英语课程填空题提示缺失问题分析8 freeCodeCamp全栈开发课程中React实验项目的分类修正9 freeCodeCamp课程中屏幕放大器知识点优化分析10 freeCodeCamp论坛排行榜项目中的错误日志规范要求
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
163
2.05 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
60
16

React Native鸿蒙化仓库
C++
199
279

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
952
558

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
96
15

基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
0

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
77
71

喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0