Cheshire Cat AI 核心项目中的文本分块技术解析
2025-06-29 23:16:31作者:舒璇辛Bertina
概述
在RAG(检索增强生成)系统中,文本分块(Chunking)是一个基础而关键的技术环节。Cheshire Cat AI核心项目通过灵活的钩子(hook)机制,为开发者提供了高度可定制的文本分块解决方案。
文本分块的重要性
文本分块技术决定了如何将大段文本分割成适合模型处理的小块。合理的分块策略直接影响着RAG系统的性能表现:
- 过大的分块可能导致信息冗余和检索效率低下
- 过小的分块可能破坏语义连贯性
- 分块重叠(overlap)的设置影响上下文信息的保留程度
Cheshire Cat的分块机制演进
项目最初采用基于字符的分块策略,但开发者很快意识到需要更灵活的解决方案。经过讨论,团队决定通过钩子机制提供自定义分块能力。
核心钩子实现
项目提供了两个关键钩子来控制文本分块过程:
1. 分块配置钩子
@hook
def rabbithole_instantiates_splitter(text_splitter: TextSplitter, cat) -> TextSplitter:
# 示例:修改分块大小和重叠量
text_splitter._chunk_size = 64
text_splitter._chunk_overlap = 8
return text_splitter
这个钩子允许开发者在分块器实例化时修改其参数,包括:
- 分块大小(chunk_size)
- 分块重叠量(chunk_overlap)
2. 预处理钩子
@hook
def before_rabbithole_splits_text(docs: List[Document], cat) -> List[Document]:
# 在此处对文档进行预处理
return docs
此钩子在分块前执行,开发者可以在此对原始文档进行预处理操作。
技术实现细节
- 分块器类型:项目默认使用递归字符文本分块器,但通过钩子可以替换为其他分块策略
- 参数控制:开发者可以动态调整分块大小和重叠量,无需修改核心代码
- 预处理能力:在分块前对文档进行清洗、格式化等操作
最佳实践建议
- 对于技术文档,建议使用较小的分块(128-256字符)和中等重叠(16-32字符)
- 对于文学性内容,可适当增大分块大小(512+字符)以保持上下文连贯
- 针对不同文档类型,可通过条件判断设置不同的分块参数
总结
Cheshire Cat AI通过灵活的钩子机制,为文本分块提供了高度可定制的解决方案。这种设计不仅保留了默认实现的简洁性,也为高级用户提供了充分的扩展空间,是RAG系统设计中值得借鉴的架构模式。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Ascend Extension for PyTorch
Python
241
277
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
694
367
仓颉编译器源码及 cjdb 调试工具。
C++
138
869
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
React Native鸿蒙化仓库
JavaScript
270
328
仓颉编程语言运行时与标准库。
Cangjie
145
881