Cheshire Cat AI 核心项目中的文本分块技术解析
2025-06-29 02:06:43作者:舒璇辛Bertina
概述
在RAG(检索增强生成)系统中,文本分块(Chunking)是一个基础而关键的技术环节。Cheshire Cat AI核心项目通过灵活的钩子(hook)机制,为开发者提供了高度可定制的文本分块解决方案。
文本分块的重要性
文本分块技术决定了如何将大段文本分割成适合模型处理的小块。合理的分块策略直接影响着RAG系统的性能表现:
- 过大的分块可能导致信息冗余和检索效率低下
- 过小的分块可能破坏语义连贯性
- 分块重叠(overlap)的设置影响上下文信息的保留程度
Cheshire Cat的分块机制演进
项目最初采用基于字符的分块策略,但开发者很快意识到需要更灵活的解决方案。经过讨论,团队决定通过钩子机制提供自定义分块能力。
核心钩子实现
项目提供了两个关键钩子来控制文本分块过程:
1. 分块配置钩子
@hook
def rabbithole_instantiates_splitter(text_splitter: TextSplitter, cat) -> TextSplitter:
# 示例:修改分块大小和重叠量
text_splitter._chunk_size = 64
text_splitter._chunk_overlap = 8
return text_splitter
这个钩子允许开发者在分块器实例化时修改其参数,包括:
- 分块大小(chunk_size)
- 分块重叠量(chunk_overlap)
2. 预处理钩子
@hook
def before_rabbithole_splits_text(docs: List[Document], cat) -> List[Document]:
# 在此处对文档进行预处理
return docs
此钩子在分块前执行,开发者可以在此对原始文档进行预处理操作。
技术实现细节
- 分块器类型:项目默认使用递归字符文本分块器,但通过钩子可以替换为其他分块策略
- 参数控制:开发者可以动态调整分块大小和重叠量,无需修改核心代码
- 预处理能力:在分块前对文档进行清洗、格式化等操作
最佳实践建议
- 对于技术文档,建议使用较小的分块(128-256字符)和中等重叠(16-32字符)
- 对于文学性内容,可适当增大分块大小(512+字符)以保持上下文连贯
- 针对不同文档类型,可通过条件判断设置不同的分块参数
总结
Cheshire Cat AI通过灵活的钩子机制,为文本分块提供了高度可定制的解决方案。这种设计不仅保留了默认实现的简洁性,也为高级用户提供了充分的扩展空间,是RAG系统设计中值得借鉴的架构模式。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134