Evil Portals 项目使用教程
1. 项目介绍
Evil Portals 是一个开源项目,旨在为 Hak5 WiFi Pineapple Tetra 和 Nano 设备提供一系列的钓鱼门户(captive portals)。这些门户可以加载到 Evil Portal 模块中,用于对 WiFi 客户端进行钓鱼攻击,以获取凭证或通过恶意软件感染受害者。该项目需要安装 Evil Portal 模块,该模块由 frozenjava 创建。
2. 项目快速启动
2.1 安装 Evil Portal 模块
在 WiFi Pineapple 设备上,进入 Modules -> Manage Modules -> Get Modules from Hak5 Community Repositories,然后安装 Evil Portal 模块。
2.2 克隆 Evil Portals 项目
在本地终端中运行以下命令,克隆 Evil Portals 项目:
git clone https://github.com/kleo/evilportals.git
2.3 复制门户到设备
进入 evilportals/portals/ 目录,并选择你希望使用的门户。然后使用 scp 命令将门户复制到 WiFi Pineapple 设备上:
cd evilportals/portals/
scp -r portal-login root@172.16.42.1:/root/portals/
或者,你也可以使用 Filezilla 等 FTP 工具手动复制门户文件。
2.4 启动 Evil Portal 模块
在 WiFi Pineapple 的 Web 界面中,启动 Evil Portal 模块,并激活你希望使用的门户。捕获的凭证数据将显示在 WiFi Pineapple 的 Web 界面中。
3. 应用案例和最佳实践
3.1 捕获 WiFi 客户端凭证
通过加载钓鱼门户,可以捕获 WiFi 客户端的登录凭证。例如,使用 facebook-login 门户来模拟 Facebook 登录页面,诱导用户输入其 Facebook 凭证。
3.2 恶意软件分发
某些门户可以配置为在用户提交凭证后,自动下载并执行恶意软件。例如,使用 firmware-upgrade 门户来模拟固件升级页面,诱导用户下载并安装恶意固件。
3.3 日志记录和通知
捕获的凭证数据将显示在 WiFi Pineapple 的 Web 界面中,并且可以通过配置通知系统,在捕获到新凭证时立即收到通知。
4. 典型生态项目
4.1 Wifiphisher
Wifiphisher 是一个类似的钓鱼工具,专注于 WiFi 网络的钓鱼攻击。它提供了多种钓鱼页面模板,可以与 Evil Portals 项目结合使用,增强钓鱼攻击的效果。
4.2 WiFi Pineapple
WiFi Pineapple 是一个强大的 WiFi 安全测试工具,支持多种模块和插件。Evil Portals 项目是 WiFi Pineapple 生态系统中的一个重要组成部分,提供了丰富的钓鱼门户模板。
4.3 Evil Portal 模块
Evil Portal 模块是 Evil Portals 项目的基础,提供了加载和管理钓鱼门户的功能。通过安装 Evil Portal 模块,可以轻松地在 WiFi Pineapple 设备上使用 Evil Portals 项目提供的门户。
通过以上步骤,你可以快速上手并使用 Evil Portals 项目进行 WiFi 钓鱼攻击。请注意,使用此类工具进行未经授权的攻击是非法的,务必遵守当地法律法规。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00