cuemacro/tcapy项目在Linux系统上的安装指南
2025-06-05 20:16:45作者:伍希望
项目概述
tcapy是一个用于交易成本分析和市场影响研究的开源工具包,由cuemacro团队开发。该项目提供了完整的解决方案,包括数据处理、计算引擎和可视化界面,特别适合金融机构和量化研究人员使用。
系统要求
tcapy主要在Linux环境下开发和测试,支持以下发行版:
- Ubuntu(推荐选择,安装和使用更简单)
- Red Hat(可能需要订阅才能安装某些依赖)
项目已在Python 3.7环境下测试,不支持Python 2.x及更早的Python 3.x版本。推荐使用Pandas 1.0.5或更高版本。
安装方式选择
tcapy提供两种主要安装方式:
-
Docker容器安装(推荐)
- 隔离性好,依赖管理简单
- 适合生产环境部署
- 包含所有服务组件
-
传统安装方式
- 直接在主机系统安装
- 适合开发和调试
- 需要手动管理依赖
Docker容器安装详解
准备工作
- 确保已安装Docker引擎
- 克隆项目到本地目录(建议使用
/home/tcapyuser/cuemacro/tcapy) - 创建工作目录和日志目录
./batch_scripts/linux/installation/create_tcapy_working_folders.sh
环境配置
- 创建
.tcapy.env文件,设置数据库凭证等环境变量 - 示例配置:
MYSQL_USER=root
MYSQL_PASSWORD=secure_password
MYSQL_ROOT_PASSWORD=secure_root_password
MONGO_INITDB_ROOT_USERNAME=admin
MONGO_INITDB_ROOT_PASSWORD=mongo_password
服务架构
docker-compose.yml定义了以下服务容器:
- Web服务层:nginx + gunicorn(主界面和交易上传界面)
- 计算服务:Celery + Redis + Memcached
- 数据存储:MongoDB(市场数据)+ MySQL(交易数据)
- 开发工具:Jupyter Notebook
构建与启动
docker-compose build # 构建所有服务镜像
docker-compose up # 启动所有容器
访问服务
- 主界面:
http://localhost:9500/tcapy - 交易上传界面:
http://localhost:9500/tcapyboard/ - Jupyter Notebook:
http://localhost:8888
传统安装方式
基础环境准备
- 安装Anaconda Python发行版
- 创建虚拟环境:
conda env create -f environment_linux_py37tca.yml
依赖安装
执行安装脚本:
# 基础工具和Apache
source install_python_tools_apache.sh
# 虚拟环境设置
source install_virtual_env.sh
# SQL Server驱动(可选)
sudo ./install_sql_driver.sh
# Python包安装
source install_pip_python_packages.sh
# Web服务
source install_nginx.sh
source install_tcapy_on_nginx_gunicorn.sh
# 数据库
source install_mongo.sh
source increase_file_limits.sh # MongoDB文件限制
source install_mysql.sh
# 任务队列
source install_memcached.sh
配置详解
关键配置文件
-
constants.py:主配置参数
- 数据存储路径
- 外部数据源配置
- 计算参数
- 数据库连接
-
constantsgen.py:GUI相关配置
- 图表显示设置
- 回调函数配置
-
constantscred.py(建议创建):
- 敏感信息(用户名/密码)
- 不应加入版本控制
数据库配置
- MongoDB:市场数据存储
- 修改
mongo.conf中的日志路径
- 修改
- MySQL:交易数据存储
- 配置连接参数
- Redis:缓存和消息代理
- 调整内存策略
测试与验证
Docker测试环境
使用专用测试配置:
make test
# 或
docker-compose -f docker-compose.test.yml run sut
常见问题解决
- 端口冲突:确保主机服务不占用容器所需端口
- 权限问题:检查文件和目录权限
- 数据库连接:验证环境变量设置
最佳实践建议
- 生产环境推荐使用Docker部署
- 开发环境可使用传统安装方式
- 定期备份配置文件
- 使用强密码保护数据库
- 监控关键服务状态
通过以上步骤,您可以成功在Linux系统上部署tcapy项目,无论是用于生产环境还是开发研究。项目提供了完整的交易分析解决方案,从数据存储到可视化分析一应俱全。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
最新内容推荐
PCDViewer-4.9.0-Ubuntu20.04:专业点云可视化与编辑工具全面解析 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案 高效验证码识别解决方案:OCRServer资源文件深度解析与应用指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 基恩士LJ-X8000A开发版SDK样本程序全面指南 - 工业激光轮廓仪开发利器 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 IK分词器elasticsearch-analysis-ik-7.17.16:中文文本分析的最佳解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 Python开发者的macOS终极指南:VSCode安装配置全攻略
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
615
140
Ascend Extension for PyTorch
Python
168
190
React Native鸿蒙化仓库
JavaScript
240
315
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
258
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
373
3.19 K
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
618
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
262
92