RomM游戏库管理系统3.10.0-beta版本发布:新增复古成就系统与多项优化
RomM是一款开源的跨平台游戏库管理系统,它能够帮助游戏爱好者高效地组织、管理和游玩各类游戏ROM。作为一个现代化的游戏库解决方案,RomM提供了游戏元数据管理、多平台支持、云同步等核心功能,特别适合复古游戏爱好者和模拟器用户使用。
本次发布的3.10.0-beta版本带来了多项重要更新,其中最引人注目的是新增的Retroachievements(复古成就系统)集成功能,让用户在游玩经典游戏时也能获得现代游戏般的成就体验。此外,该版本还包含了多项用户体验改进、性能优化和安全增强。
Retroachievements复古成就系统集成
Retroachievements是一个为复古游戏设计的成就系统,类似于现代游戏平台上的成就/奖杯系统。RomM 3.10.0-beta版本深度集成了这一功能,为经典游戏注入了新的活力。
要启用这一功能,用户需要:
- 在环境变量中添加RETROACHIEVEMENTS_API_KEY
- 对目标平台执行部分扫描以匹配Retroachievements数据
- 在个人资料设置中添加RA用户名并同步
- 在游戏详情页的"个人"标签下即可查看相关成就信息
系统会缓存RA数据库以减少不必要的API调用,缓存刷新周期可通过REFRESH_RETROACHIEVEMENTS_CACHE_DAYS环境变量进行配置。
用户体验增强
游戏筛选功能升级
新增了"仅显示可玩"和"仅显示支持成就"的筛选选项,让用户能快速找到符合特定条件的游戏。同时支持按文件大小排序游戏,方便管理存储空间。
界面交互优化
增加了3D卡片倾斜效果的开关选项,用户可以根据个人喜好调整界面动效。平台分组选项也被添加到抽屉菜单中,提升导航效率。
删除操作改进
在删除对话框中加入"同时排除"选项,避免已删除的游戏在后续扫描中重新出现。
账号与安全功能
密码恢复与邀请注册
新增了密码恢复功能,解决了用户忘记密码时的痛点。同时支持通过邀请链接注册,便于管理员控制用户增长。
OIDC改进
修正了使用OIDC(OpenID Connect)时的用户创建逻辑,提升了第三方认证的可靠性。
性能与稳定性提升
资源管理优化
通过多项措施降低了内存使用量,特别是在处理大型游戏库时表现更为稳定。同时统一了日志系统,便于问题排查。
文件系统重构
重新设计了assets目录结构,特别是针对存档和状态的存储路径进行了调整。这一变更需要用户在升级前备份/romm/assets目录和数据库。
错误处理增强
改进了图像读取失败时的处理逻辑,提升了扫描过程的健壮性。同时修复了iOS设备上的全屏播放问题。
其他改进
新增了服务器统计页面,让管理员能直观了解系统资源使用情况。浏览器标签现在会显示适当的标题,提升了多标签浏览体验。还增加了ROMM_BASE_URL环境变量,确保Docker日志中的链接正确显示。
总结
RomM 3.10.0-beta版本通过引入Retroachievements集成,为复古游戏体验增添了新的维度。配合多项用户体验优化和性能改进,这个版本进一步巩固了RomM作为专业游戏库管理解决方案的地位。对于追求完美游戏库管理的用户来说,这次升级提供了更多个性化选项和更稳定的使用体验。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00