MicroPython-lib中requests模块的headers参数处理问题分析
问题背景
在MicroPython的requests模块使用过程中,开发者发现了一个与HTTP请求头(headers)处理相关的问题。当用户向requests.get()方法传递headers参数时,该模块会意外地修改调用者提供的headers字典对象,这种行为与标准Python的requests库表现不一致。
问题现象
通过一个简单的测试用例可以重现这个问题:
import requests
headers = {} # 创建一个空字典作为请求头
response = requests.get(
url="http://www.google.com",
headers=headers, # 传入空字典
data="string",
)
print(headers) # 发现headers字典已被修改
assert headers == {}, "requests返回了被修改的headers给调用者"
在标准Python环境下,这个测试用例会正常通过,因为标准requests库不会修改调用者的headers字典。但在MicroPython环境下,测试会失败,因为headers字典被意外修改了。
技术分析
这个问题的根源在于MicroPython的requests模块实现中,没有对传入的headers参数进行保护性拷贝。当模块内部需要添加默认头信息(如User-Agent)时,它直接修改了传入的字典对象,而不是先创建一个副本。
正确的做法应该是:
- 接收headers参数
- 创建该参数的深拷贝或浅拷贝(对于headers来说,浅拷贝通常足够)
- 在拷贝上进行修改操作
- 使用修改后的拷贝进行HTTP请求
解决方案
修复方案非常简单,只需要在修改headers前创建一个副本即可。具体实现是在处理headers参数时添加以下代码:
if headers is None:
headers = {}
else:
headers = headers.copy() # 创建调用者headers的副本
这样修改后,模块内部对headers的所有操作都将在副本上进行,不会影响调用者传入的原始字典。
影响范围
这个问题会影响所有使用MicroPython requests模块并直接传递字典对象作为headers参数的场景。特别是当开发者重复使用同一个headers字典对象进行多次请求时,可能会遇到不可预期的行为。
最佳实践
为了避免类似问题,开发者可以采取以下措施:
- 总是在传递headers参数前显式创建字典副本
- 或者使用不可变对象(如frozenset)作为headers的基础
- 考虑使用请求库提供的工具方法创建标准headers
总结
MicroPython-lib的requests模块的这个行为差异已经被修复。这个案例提醒我们,在编写库代码时,应该特别注意不要意外修改调用者传入的可变对象,这是API设计中的一个重要原则。对于接收字典、列表等可变对象作为参数的函数,应该考虑是否需要保护性拷贝,以避免副作用。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~059CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava05GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









