CHAMP项目中的CUDA内存优化技巧
2025-06-15 20:15:44作者:苗圣禹Peter
背景介绍
CHAMP是一个先进的生成式视觉项目,它能够根据输入的参考动作生成高质量的3D人体运动序列。然而,在实际运行过程中,许多用户反馈该项目对GPU显存的需求较高,特别是在使用RTX 3090等消费级显卡时容易出现"CUDA out of memory"的错误。
内存问题分析
CHAMP项目在进行运动生成时,需要同时处理多个数据帧和复杂的神经网络计算。这导致显存占用会随着以下几个因素显著增加:
- 输入参考动作的帧数
- 生成动作的复杂度
- 模型参数的规模
- 批处理大小
解决方案
1. 减少输入帧数
最直接的优化方法是减少输入参考动作的帧数。在代码实现上,可以通过修改数据加载部分的切片操作来实现:
# 原始代码可能加载全部帧
for guidance_image_path in Path(guidance_data_folder).iterdir():
# 优化后代码只加载前100帧
for guidance_image_path in sorted(Path(guidance_data_folder).iterdir())[:100]:
这种修改可以将显存占用从原来的高水位降低到约12GB,使得RTX 3090(24GB显存)能够顺利运行。
2. 使用简化示例数据
CHAMP项目提供了多个示例数据集,其中不同数据集的复杂度和帧数各不相同。用户可以:
- 打开项目中的
inference.yaml
配置文件 - 选择帧数较少、复杂度较低的示例数据
- 测试不同数据集对显存的实际需求
经测试,使用"motion-02"等相对简单的示例数据可以在RTX 3090上正常运行。
3. 其他潜在优化方向
虽然上述两种方法已经能解决大部分情况下的显存问题,但用户还可以考虑:
- 降低模型精度:将模型从FP32转为FP16或混合精度运行
- 减小批处理大小:在配置文件中调整batch size参数
- 使用梯度检查点:以计算时间换取显存空间
- 模型分割:将大模型分割成多个部分分别计算
实施建议
对于大多数用户,建议按照以下步骤进行优化:
- 首先尝试使用帧数较少的示例数据
- 如果仍需使用复杂数据,则限制加载的帧数
- 最后考虑其他高级优化技术
通过这些方法,用户可以在不更换硬件的情况下,使CHAMP项目在现有GPU上稳定运行,充分发挥其强大的运动生成能力。
登录后查看全文
热门项目推荐
相关项目推荐
GLM-4.6
GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】Jinja00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0108AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile010
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp课程中屏幕放大器知识点优化分析2 freeCodeCamp英语课程填空题提示缺失问题分析3 freeCodeCamp课程页面空白问题的技术分析与解决方案4 freeCodeCamp Cafe Menu项目中link元素的void特性解析5 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 6 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析7 freeCodeCamp全栈开发课程中React实验项目的分类修正8 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析9 freeCodeCamp博客页面工作坊中的断言方法优化建议10 freeCodeCamp论坛排行榜项目中的错误日志规范要求
最新内容推荐
ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 Jetson TX2开发板官方资源完全指南:从入门到精通 WebVideoDownloader:高效网页视频抓取工具全面使用指南 海能达HP680CPS-V2.0.01.004chs写频软件:专业对讲机配置管理利器 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 IEC61850建模工具及示例资源:智能电网自动化配置的完整指南 高效汇编代码注入器:跨平台x86/x64架构的终极解决方案
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
214
2.22 K

暂无简介
Dart
520
116

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
979
580

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
552
86

Ascend Extension for PyTorch
Python
65
96

React Native鸿蒙化仓库
JavaScript
209
285

openGauss kernel ~ openGauss is an open source relational database management system
C++
147
194

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399