Futhark 0.25.30版本发布:数学函数增强与AD优化
Futhark是一种高性能的函数式数据并行编程语言,专为GPU加速计算而设计。它允许开发者编写简洁的并行算法,同时自动处理底层优化细节。最新发布的0.25.30版本带来了一系列数学函数增强和自动微分(AD)方面的改进。
数学函数扩展
本次更新在f16、f32和f64模块中新增了多个实用的数学函数:
-
新增了倒数平方根函数
rsqrt,该函数比先计算平方根再取倒数更高效,特别适合需要频繁计算归一化因子的场景。 -
引入了一组以π为单位的三角函数和反三角函数:
cospi、sinpi、tanpi:这些函数直接计算参数乘以π后的三角函数值,避免了额外的乘法运算acospi、asinpi、atanpi、atan2pi:相应的反三角函数,结果以π为单位表示
这些新函数不仅提高了代码的可读性,还能减少数值误差,因为它们在实现上会针对π的倍数进行特殊优化。
自动微分改进
自动微分是Futhark的重要特性之一,本版本在这方面有多项优化:
-
修复了解释器在处理和类型(sum type)时的崩溃问题,虽然结果可能仍有局限,但至少保证了稳定性。
-
修正了比较操作的导数计算问题。之前版本尝试为比较操作赋予某种数学解释,但这种做法既不严谨也无实用价值,现在统一将比较操作的导数设为零,这更符合数学原理。
-
反向模式AD现在能够正确处理顺序流(sequential streams),扩展了自动微分的应用范围。
-
解释器中的
vjp(向量-雅可比乘积)实现进行了优化,现在具有渐进效率,大幅提升了大规模计算时的性能。
编译器与解释器优化
-
融合引擎(fusion engine)的能力得到增强,现在能够更好地跨越多层嵌套的
map操作进行融合,即使这些操作被reshape分隔。这可以显著减少中间数据的产生,提高内存效率。 -
修复了GPU后端在并行转置大量矩阵时可能出现的内存越界读取问题,提高了稳定性和安全性。
-
修正了解释器中
open语句的处理问题,确保模块系统正常工作。 -
解决了单态化过程中大小推断的一些边界情况问题,以及混合使用类型缩写和数组时的入口点类型注册问题。
包管理器改进
futhark pkg工具现在支持在包路径中使用下划线,这提高了包命名的灵活性,使开发者能够使用更符合习惯的命名方式。
总结
Futhark 0.25.30版本虽然在版本号上是一个小更新,但在数学函数支持、自动微分可靠性和编译器优化方面都带来了实质性改进。这些变化使得Futhark在科学计算和机器学习领域的应用更加得心应手,特别是新增的π相关三角函数和AD稳定性提升,将直接惠及需要进行复杂数学运算和梯度计算的用户。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C046
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0124
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00