HuggingFace SmolLM项目中的学习率调度配置问题分析
2025-07-03 10:04:08作者:何将鹤
背景介绍
HuggingFace开源的SmolLM项目是一个专注于小型语言模型预训练的研究项目。该项目发布了135M和360M两种参数规模的模型配置,声称这些模型是在6000亿token的数据集上进行训练的。按照常规的预训练设置,这相当于60万步的训练(每步处理100万token)。
发现问题
在仔细研究135M模型的配置文件时,技术专家发现了一个潜在的学习率调度配置问题。学习率调度器被设置为从25万步开始衰减,并在5万步内线性衰减到0,这意味着从30万步开始学习率就降为0了。然而,配置文件中的总训练步数却设置为60万步,这显然存在矛盾。
技术分析
学习率调度是深度学习训练中的关键组件,它决定了模型参数更新的步长如何随时间变化。常见的学习率调度策略包括:
- 恒定学习率
- 线性衰减
- 余弦衰减
- 阶梯式衰减
在SmolLM项目中,采用的是线性衰减策略。正确的配置应该确保学习率在整个训练过程中都保持有效值,特别是在大规模预训练任务中,过早将学习率降为0会导致模型在后期训练阶段无法继续优化。
问题影响
如果按照原配置执行,模型将在30万步后停止有效学习,相当于只利用了50%的预定训练数据。这不仅浪费计算资源,还可能导致模型无法达到最佳性能。相比之下,360M模型的配置看起来是正确的,学习率调度与总训练步数相匹配。
解决方案
项目维护者已经确认了这个问题,并提交了修复。对于使用该配置的研究人员和开发者,建议:
- 更新到最新版本的配置文件
- 检查学习率调度与总训练步数的匹配性
- 在自定义训练配置时,确保学习率在整个训练期间都保持有效
经验总结
这个案例提醒我们,在深度学习项目配置中需要特别注意:
- 训练超参数之间的逻辑一致性
- 调度器配置与总训练时长的匹配
- 大规模训练任务中的资源配置优化
特别是在开源项目中,清晰的配置文档和示例对于社区用户至关重要。技术团队应该建立配置验证机制,避免类似问题的发生。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0126
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
445
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
823
398
Ascend Extension for PyTorch
Python
251
285
React Native鸿蒙化仓库
JavaScript
278
329
暂无简介
Dart
702
166
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
142
51
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
679
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
557
111