HuggingFace SmolLM项目中的学习率调度配置问题分析
2025-07-03 17:34:58作者:何将鹤
背景介绍
HuggingFace开源的SmolLM项目是一个专注于小型语言模型预训练的研究项目。该项目发布了135M和360M两种参数规模的模型配置,声称这些模型是在6000亿token的数据集上进行训练的。按照常规的预训练设置,这相当于60万步的训练(每步处理100万token)。
发现问题
在仔细研究135M模型的配置文件时,技术专家发现了一个潜在的学习率调度配置问题。学习率调度器被设置为从25万步开始衰减,并在5万步内线性衰减到0,这意味着从30万步开始学习率就降为0了。然而,配置文件中的总训练步数却设置为60万步,这显然存在矛盾。
技术分析
学习率调度是深度学习训练中的关键组件,它决定了模型参数更新的步长如何随时间变化。常见的学习率调度策略包括:
- 恒定学习率
- 线性衰减
- 余弦衰减
- 阶梯式衰减
在SmolLM项目中,采用的是线性衰减策略。正确的配置应该确保学习率在整个训练过程中都保持有效值,特别是在大规模预训练任务中,过早将学习率降为0会导致模型在后期训练阶段无法继续优化。
问题影响
如果按照原配置执行,模型将在30万步后停止有效学习,相当于只利用了50%的预定训练数据。这不仅浪费计算资源,还可能导致模型无法达到最佳性能。相比之下,360M模型的配置看起来是正确的,学习率调度与总训练步数相匹配。
解决方案
项目维护者已经确认了这个问题,并提交了修复。对于使用该配置的研究人员和开发者,建议:
- 更新到最新版本的配置文件
- 检查学习率调度与总训练步数的匹配性
- 在自定义训练配置时,确保学习率在整个训练期间都保持有效
经验总结
这个案例提醒我们,在深度学习项目配置中需要特别注意:
- 训练超参数之间的逻辑一致性
- 调度器配置与总训练时长的匹配
- 大规模训练任务中的资源配置优化
特别是在开源项目中,清晰的配置文档和示例对于社区用户至关重要。技术团队应该建立配置验证机制,避免类似问题的发生。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
yuanrongopenYuanrong runtime:openYuanrong 多语言运行时提供函数分布式编程,支持 Python、Java、C++ 语言,实现类单机编程高性能分布式运行。Go051
pc-uishopTNT开源商城系统使用java语言开发,基于SpringBoot架构体系构建的一套b2b2c商城,商城是满足集平台自营和多商户入驻于一体的多商户运营服务系统。包含PC 端、手机端(H5\APP\小程序),系统架构以及实现案例中应满足和未来可能出现的业务系统进行对接。Vue00
ebook-to-mindmapepub、pdf 拆书 AI 总结TSX01
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
541
3.77 K
Ascend Extension for PyTorch
Python
351
419
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
615
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
186
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
988
253
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
194
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
115
141
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.35 K
759