LLM-Guard API接口文档与集成实践指南
2025-07-10 17:09:23作者:伍霜盼Ellen
概述
LLM-Guard作为一个保护大型语言模型的安全防护工具,其API接口设计对于开发者集成至关重要。本文将详细介绍如何获取API文档说明以及Python集成的最佳实践方案。
API文档访问方式
LLM-Guard项目提供了两种主要方式获取API接口文档:
-
调试模式访问:通过设置环境变量
LOG_LEVEL=DEBUG启动服务后,系统会自动启用Swagger UI界面,开发者可以直观地查看所有可用API端点及其参数定义。 -
官方文档参考:项目维护了完整的API Schema文档,详细描述了每个端点的请求格式、参数说明和响应结构。
核心API接口
LLM-Guard主要提供以下关键API端点:
- 文本扫描接口:POST请求端点,接收待检测的文本内容,返回安全评估结果
- 配置管理接口:允许动态调整防护策略和敏感度阈值
- 日志查询接口:获取历史扫描记录和检测结果
Python集成示例
以下是一个完整的Python集成示例代码,展示了如何与LLM-Guard API进行交互:
import requests
from typing import Dict, Any
class LLMGuardClient:
def __init__(self, base_url: str, api_key: str = None):
self.base_url = base_url.rstrip('/')
self.headers = {'Content-Type': 'application/json'}
if api_key:
self.headers['Authorization'] = f'Bearer {api_key}'
def scan_text(self, text: str, scan_config: Dict[str, Any] = None) -> Dict[str, Any]:
"""
发送文本到LLM-Guard进行安全扫描
参数:
text: 待扫描的文本内容
scan_config: 可选的扫描配置参数
返回:
包含扫描结果的字典
"""
endpoint = f"{self.base_url}/api/v1/scan"
payload = {
"text": text,
"config": scan_config or {}
}
try:
response = requests.post(
endpoint,
json=payload,
headers=self.headers,
timeout=30
)
response.raise_for_status()
return response.json()
except requests.exceptions.RequestException as e:
print(f"扫描请求失败: {str(e)}")
return {"error": str(e)}
# 使用示例
if __name__ == "__main__":
client = LLMGuardClient("http://localhost:8080")
sample_text = "这是一段需要检测的文本内容..."
result = client.scan_text(sample_text)
print("扫描结果:", result)
最佳实践建议
-
错误处理机制:实现完善的异常捕获和重试逻辑,处理网络波动或服务不可用情况
-
性能优化:对于高频使用场景,建议:
- 使用连接池保持HTTP长连接
- 考虑异步IO处理提高吞吐量
- 实现本地缓存减少重复扫描
-
安全考虑:
- 妥善保管API密钥
- 启用HTTPS加密传输
- 实现请求签名验证(如支持)
-
监控集成:建议添加以下监控指标:
- API响应时间
- 错误率统计
- 扫描结果分类统计
高级配置选项
LLM-Guard支持丰富的配置参数,开发者可以根据实际需求调整:
- 敏感度阈值:控制不同类型风险的严格程度
- 自定义规则集:加载特定领域的检测规则
- 白名单管理:设置允许通过的特定内容模式
通过合理配置这些参数,可以在安全防护和用户体验之间取得最佳平衡。
总结
LLM-Guard提供了完善的API接口体系,开发者可以轻松将其集成到现有聊天应用中。本文介绍的Python实现方案遵循了企业级应用的最佳实践,具有高可靠性和可扩展性特点。建议开发者在实际集成时,根据具体业务需求进行适当的定制化调整。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
403
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355