MaaFramework 4.3.0-beta.1版本发布:新增Pipeline JSONC支持与多平台优化
MaaFramework是一个开源的自动化测试框架,专注于为移动设备和桌面平台提供高效的自动化解决方案。该项目通过计算机视觉和机器学习技术,实现了对各类应用程序的自动化操作和测试能力。最新发布的4.3.0-beta.1版本带来了一系列功能增强和优化。
核心功能更新
本次版本最重要的改进之一是Pipeline系统新增了对JSONC(JSON with Comments)格式的支持。JSONC是JSON的超集,允许开发者在配置文件中添加注释,这大大提高了配置文件的可读性和可维护性。对于自动化测试场景中复杂的配置需求,这一改进将显著提升开发者的工作效率。
平台兼容性增强
在平台支持方面,4.3.0-beta.1版本新增了对Waydroid环境的检测功能。Waydroid是一个在Linux系统上运行Android应用的开源方案,这一改进使得MaaFramework能够更好地识别和适配这种特殊环境,为Linux用户提供更完善的Android自动化测试支持。
架构重构与优化
本次版本对控制单元API进行了重构,这是框架核心组件之一。重构后的API设计更加清晰,为后续功能扩展打下了更好的基础。这种底层架构的持续优化体现了项目团队对代码质量的重视。
社区生态发展
文档方面,新增了两个社区实践案例:MaaGumballs(不思议迷宫敲砖小助手)和MMleo(偶像梦幻祭2小助手)。这些案例展示了MaaFramework在不同游戏自动化场景中的应用,为开发者提供了有价值的参考。同时,项目文档也更新了免责声明,明确了使用边界和责任范围。
多平台支持
MaaFramework继续保持其跨平台特性,为Android(arm64/x86_64)、Linux(arm64/x86_64)、macOS(arm64/x86_64)和Windows(arm64/x86_64)等平台提供了预编译版本。每个平台的构建包都经过优化,确保在不同硬件架构上都能获得最佳性能表现。
作为beta版本,4.3.0-beta.1主要面向开发者和早期采用者,用于测试新功能和收集反馈。项目团队鼓励用户尝试这个版本,并报告任何发现的问题,以帮助完善即将到来的稳定版本。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00