MaaFramework 4.3.0-beta.1版本发布:新增Pipeline JSONC支持与多平台优化
MaaFramework是一个开源的自动化测试框架,专注于为移动设备和桌面平台提供高效的自动化解决方案。该项目通过计算机视觉和机器学习技术,实现了对各类应用程序的自动化操作和测试能力。最新发布的4.3.0-beta.1版本带来了一系列功能增强和优化。
核心功能更新
本次版本最重要的改进之一是Pipeline系统新增了对JSONC(JSON with Comments)格式的支持。JSONC是JSON的超集,允许开发者在配置文件中添加注释,这大大提高了配置文件的可读性和可维护性。对于自动化测试场景中复杂的配置需求,这一改进将显著提升开发者的工作效率。
平台兼容性增强
在平台支持方面,4.3.0-beta.1版本新增了对Waydroid环境的检测功能。Waydroid是一个在Linux系统上运行Android应用的开源方案,这一改进使得MaaFramework能够更好地识别和适配这种特殊环境,为Linux用户提供更完善的Android自动化测试支持。
架构重构与优化
本次版本对控制单元API进行了重构,这是框架核心组件之一。重构后的API设计更加清晰,为后续功能扩展打下了更好的基础。这种底层架构的持续优化体现了项目团队对代码质量的重视。
社区生态发展
文档方面,新增了两个社区实践案例:MaaGumballs(不思议迷宫敲砖小助手)和MMleo(偶像梦幻祭2小助手)。这些案例展示了MaaFramework在不同游戏自动化场景中的应用,为开发者提供了有价值的参考。同时,项目文档也更新了免责声明,明确了使用边界和责任范围。
多平台支持
MaaFramework继续保持其跨平台特性,为Android(arm64/x86_64)、Linux(arm64/x86_64)、macOS(arm64/x86_64)和Windows(arm64/x86_64)等平台提供了预编译版本。每个平台的构建包都经过优化,确保在不同硬件架构上都能获得最佳性能表现。
作为beta版本,4.3.0-beta.1主要面向开发者和早期采用者,用于测试新功能和收集反馈。项目团队鼓励用户尝试这个版本,并报告任何发现的问题,以帮助完善即将到来的稳定版本。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00