GSplat多GPU训练中的性能问题分析与解决方案
2025-06-28 16:48:00作者:羿妍玫Ivan
问题背景
在3D高斯泼溅(3D Gaussian Splatting)领域,GSplat是一个重要的开源实现。近期有用户报告在使用GSplat进行多GPU训练时遇到了性能显著下降的问题,表现为训练后的渲染质量指标(PSNR、SSIM、LPIPS)明显低于单GPU训练结果。
问题现象
用户在使用GSplat 1.3.0版本进行多GPU训练时发现以下现象:
- 在多GPU训练模式下,每个GPU会生成独立的检查点文件(如ckpt_14999_rank0.pt和ckpt_14999_rank1.pt)
- 直接使用单个检查点文件进行评估时,得到的渲染质量指标显著低于预期
- 在多个不同数据集(Truck、Dozer等)上都复现了相同问题
- 单GPU训练模式下指标表现正常
问题根源分析
经过技术分析,这个问题源于GSplat在多GPU训练时的数据分布机制:
- 数据分布特性:在多GPU训练时,整个场景的高斯点云会被自动分配到不同的GPU上,每个GPU只保存和优化自己负责的那部分高斯点
- 检查点机制:训练过程中,每个GPU独立保存检查点文件,而不是合并后的完整场景
- 评估方式:直接使用单个检查点文件评估时,只能加载部分场景数据,导致渲染不完整、质量下降
解决方案
针对这个问题,开发者提供了两种解决方案:
方案一:训练时启用评估
在训练命令中设置--eval_steps参数,让训练过程自动执行评估:
python3 gsplat/examples/simple_trainer.py default --eval_steps 1000 ...
这种方式会在训练过程中定期执行完整场景的评估,得到准确的指标结果。
方案二:手动合并检查点
训练完成后,可以编写脚本将多个GPU的检查点合并为一个完整场景,再进行评估。核心代码逻辑如下:
# 加载所有rank的检查点
checkpoints = []
for rank in range(world_size):
ckpt_path = f"ckpt_14999_rank{rank}.pt"
checkpoints.append(torch.load(ckpt_path))
# 合并高斯点云参数
merged_params = {}
for key in checkpoints[0].keys():
merged_params[key] = torch.cat([ckpt[key] for ckpt in checkpoints])
# 保存合并后的检查点
torch.save(merged_params, "merged_checkpoint.pt")
然后使用合并后的检查点进行评估:
python3 gsplat/examples/simple_trainer.py default --ckpt merged_checkpoint.pt ...
技术建议
- 训练策略选择:对于小型场景,单GPU训练可能更为简单高效;大型场景才需要考虑多GPU训练
- 资源监控:训练过程中应监控GPU内存使用情况,合理设置高斯点数量上限
- 评估频率:根据训练时长合理设置
--eval_steps,平衡训练效率和评估需求 - 版本兼容性:注意不同版本间的行为差异,特别是多GPU支持方面的改进
总结
GSplat的多GPU训练机制通过分布式处理提高了大规模场景的训练效率,但需要特别注意检查点的处理方式。理解其数据分布原理后,通过合理的评估设置或检查点合并,可以确保获得准确的渲染质量评估结果。这一问题的解决不仅提升了工具的使用体验,也加深了我们对分布式3D重建技术的理解。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C081
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python056
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0135
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
466
3.47 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
715
172
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
203
81
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.26 K
695
无需学习 Kubernetes 的容器平台,在 Kubernetes 上构建、部署、组装和管理应用,无需 K8s 专业知识,全流程图形化管理
Go
15
1
基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
1