Qwen1.5模型显存占用优化技术解析
2025-05-12 01:35:11作者:范垣楠Rhoda
在Qwen1.5模型的使用过程中,许多开发者发现相比Qwen1.0版本,模型的显存占用有了显著增加。这一现象引起了广泛关注,特别是在训练场景下,显存消耗的增加尤为明显。本文将深入分析这一问题的技术原因,并提供多种优化方案。
显存增加的核心原因
Qwen1.5模型架构的一个关键变化是注意力机制实现的默认设置。在Qwen1.0中,如果安装了flash attention,系统会自动启用这一高效实现;而在Qwen1.5中,这一自动启用机制被移除,默认采用了"eager"模式的注意力实现。
"eager"模式是PyTorch的原生实现方式,虽然兼容性最好,但计算效率较低,显存占用较高。这种实现方式会完整计算并存储注意力矩阵,导致显存需求随序列长度呈平方级增长。
优化方案详解
方案一:启用SDPA注意力
SDPA(Scaled Dot Product Attention)是PyTorch提供的一种优化后的注意力实现,相比原生实现有更好的内存效率。可以通过以下两种方式启用:
- 修改config.json文件,添加配置项:
"_attn_implementation": "sdpa"
- 在模型加载时指定参数:
model = AutoModelForCausalLM.from_pretrained(
...,
attn_implementation="sdpa",
...
)
方案二:启用Flash Attention 2
Flash Attention 2是目前最高效的注意力实现之一,可以显著降低显存占用并提高计算速度。启用方法如下:
model = AutoModelForCausalLM.from_pretrained(
...,
attn_implementation="flash_attention_2",
torch_dtype="auto", # 或torch.bfloat16/torch.float16
...
)
需要注意的是,使用Flash Attention 2需要确保:
- 安装了正确版本的flash-attn库
- 使用兼容的GPU硬件
- 设置正确的torch_dtype
量化方案的选择
对于显存极度受限的场景,可以考虑量化方案,但需要注意:
- bitsandbytes量化可能导致明显的精度损失
- 推荐使用GPTQ或AWQ量化版本
- 可以结合QLoRA进行高效微调
实际效果对比
在实际测试中,使用优化后的注意力实现可以带来显著的显存节省。例如,在72B参数的Qwen1.5模型上:
- 使用dp3和flash_attention_2,16张A10显卡可以支持2048 tokens的序列长度
- 相同配置下,默认设置只能支持1024 tokens
总结与建议
Qwen1.5模型显存占用的增加主要源于注意力实现机制的改变。通过合理配置注意力实现方式,开发者可以在保持模型性能的同时,显著降低显存需求。对于不同场景,我们建议:
- 训练场景:优先使用flash_attention_2
- 推理场景:根据硬件条件选择flash_attention_2或sdpa
- 资源受限场景:考虑GPTQ/AWQ量化+QLoRA的组合方案
通过理解这些技术细节并合理应用优化方案,开发者可以更高效地利用Qwen1.5模型进行各种自然语言处理任务。
登录后查看全文
热门项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
Spark-Prover-X1-7BSpark-Prover-X1-7B is a 7B-parameter large language model developed by iFLYTEK for automated theorem proving in Lean4. It generates complete formal proofs for mathematical theorems using a three-stage training framework combining pre-training, supervised fine-tuning, and reinforcement learning. The model achieves strong formal reasoning performance and state-of-the-art results across multiple theorem-proving benchmarksPython00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer-X1-7B is a 7B-parameter large language model by iFLYTEK for mathematical auto-formalization. It translates natural-language math problems into precise Lean4 formal statements, achieving high accuracy and logical consistency. The model is trained with a two-stage strategy combining large-scale pre-training and supervised fine-tuning for robust formal reasoning.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile015
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 ZLIB 1.3 静态库 Windows x64 版本:高效数据压缩解决方案完全指南 2023年最新HTMLCSSJS组件库:提升前端开发效率的必备资源 Qt控件CSS样式实例大全 - 打造现代化GUI界面的终极指南 Photoshop作业资源文件下载指南:全面提升设计学习效率的必备素材库 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
306
2.7 K
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
137
169
React Native鸿蒙化仓库
JavaScript
235
309
暂无简介
Dart
598
130
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
631
232
仓颉编译器源码及 cjdb 调试工具。
C++
123
688
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.06 K
615
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
197
74
仓颉编程语言测试用例。
Cangjie
36
688