Qwen1.5模型显存占用优化技术解析
2025-05-12 16:04:15作者:范垣楠Rhoda
在Qwen1.5模型的使用过程中,许多开发者发现相比Qwen1.0版本,模型的显存占用有了显著增加。这一现象引起了广泛关注,特别是在训练场景下,显存消耗的增加尤为明显。本文将深入分析这一问题的技术原因,并提供多种优化方案。
显存增加的核心原因
Qwen1.5模型架构的一个关键变化是注意力机制实现的默认设置。在Qwen1.0中,如果安装了flash attention,系统会自动启用这一高效实现;而在Qwen1.5中,这一自动启用机制被移除,默认采用了"eager"模式的注意力实现。
"eager"模式是PyTorch的原生实现方式,虽然兼容性最好,但计算效率较低,显存占用较高。这种实现方式会完整计算并存储注意力矩阵,导致显存需求随序列长度呈平方级增长。
优化方案详解
方案一:启用SDPA注意力
SDPA(Scaled Dot Product Attention)是PyTorch提供的一种优化后的注意力实现,相比原生实现有更好的内存效率。可以通过以下两种方式启用:
- 修改config.json文件,添加配置项:
"_attn_implementation": "sdpa"
- 在模型加载时指定参数:
model = AutoModelForCausalLM.from_pretrained(
...,
attn_implementation="sdpa",
...
)
方案二:启用Flash Attention 2
Flash Attention 2是目前最高效的注意力实现之一,可以显著降低显存占用并提高计算速度。启用方法如下:
model = AutoModelForCausalLM.from_pretrained(
...,
attn_implementation="flash_attention_2",
torch_dtype="auto", # 或torch.bfloat16/torch.float16
...
)
需要注意的是,使用Flash Attention 2需要确保:
- 安装了正确版本的flash-attn库
- 使用兼容的GPU硬件
- 设置正确的torch_dtype
量化方案的选择
对于显存极度受限的场景,可以考虑量化方案,但需要注意:
- bitsandbytes量化可能导致明显的精度损失
- 推荐使用GPTQ或AWQ量化版本
- 可以结合QLoRA进行高效微调
实际效果对比
在实际测试中,使用优化后的注意力实现可以带来显著的显存节省。例如,在72B参数的Qwen1.5模型上:
- 使用dp3和flash_attention_2,16张A10显卡可以支持2048 tokens的序列长度
- 相同配置下,默认设置只能支持1024 tokens
总结与建议
Qwen1.5模型显存占用的增加主要源于注意力实现机制的改变。通过合理配置注意力实现方式,开发者可以在保持模型性能的同时,显著降低显存需求。对于不同场景,我们建议:
- 训练场景:优先使用flash_attention_2
- 推理场景:根据硬件条件选择flash_attention_2或sdpa
- 资源受限场景:考虑GPTQ/AWQ量化+QLoRA的组合方案
通过理解这些技术细节并合理应用优化方案,开发者可以更高效地利用Qwen1.5模型进行各种自然语言处理任务。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++020Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0279Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 2 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析3 freeCodeCamp英语课程填空题提示缺失问题分析4 freeCodeCamp Cafe Menu项目中link元素的void特性解析5 freeCodeCamp课程中屏幕放大器知识点优化分析6 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析7 freeCodeCamp课程视频测验中的Tab键导航问题解析8 freeCodeCamp论坛排行榜项目中的错误日志规范要求9 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析10 freeCodeCamp音乐播放器项目中的函数调用问题解析
最新内容推荐
小米Mini R1C MT7620爱快固件下载指南:解锁企业级网络管理功能 STM32到GD32项目移植完全指南:从兼容性到实战技巧 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 咖啡豆识别数据集:AI目标检测在咖啡质量控制中的革命性应用 PANTONE潘通AI色板库:设计师必备的色彩管理利器 OpenSSL 3.3.0资源下载指南:新一代加密库的全面解析与部署教程 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南
项目优选
收起

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
156
2 K

deepin linux kernel
C
22
6

Ascend Extension for PyTorch
Python
38
72

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
519
50

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
942
555

React Native鸿蒙化仓库
C++
195
279

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
993
396

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
359
12

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
191

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
75
71