Qwen1.5模型显存占用优化技术解析
2025-05-12 03:33:05作者:范垣楠Rhoda
在Qwen1.5模型的使用过程中,许多开发者发现相比Qwen1.0版本,模型的显存占用有了显著增加。这一现象引起了广泛关注,特别是在训练场景下,显存消耗的增加尤为明显。本文将深入分析这一问题的技术原因,并提供多种优化方案。
显存增加的核心原因
Qwen1.5模型架构的一个关键变化是注意力机制实现的默认设置。在Qwen1.0中,如果安装了flash attention,系统会自动启用这一高效实现;而在Qwen1.5中,这一自动启用机制被移除,默认采用了"eager"模式的注意力实现。
"eager"模式是PyTorch的原生实现方式,虽然兼容性最好,但计算效率较低,显存占用较高。这种实现方式会完整计算并存储注意力矩阵,导致显存需求随序列长度呈平方级增长。
优化方案详解
方案一:启用SDPA注意力
SDPA(Scaled Dot Product Attention)是PyTorch提供的一种优化后的注意力实现,相比原生实现有更好的内存效率。可以通过以下两种方式启用:
- 修改config.json文件,添加配置项:
"_attn_implementation": "sdpa"
- 在模型加载时指定参数:
model = AutoModelForCausalLM.from_pretrained(
...,
attn_implementation="sdpa",
...
)
方案二:启用Flash Attention 2
Flash Attention 2是目前最高效的注意力实现之一,可以显著降低显存占用并提高计算速度。启用方法如下:
model = AutoModelForCausalLM.from_pretrained(
...,
attn_implementation="flash_attention_2",
torch_dtype="auto", # 或torch.bfloat16/torch.float16
...
)
需要注意的是,使用Flash Attention 2需要确保:
- 安装了正确版本的flash-attn库
- 使用兼容的GPU硬件
- 设置正确的torch_dtype
量化方案的选择
对于显存极度受限的场景,可以考虑量化方案,但需要注意:
- bitsandbytes量化可能导致明显的精度损失
- 推荐使用GPTQ或AWQ量化版本
- 可以结合QLoRA进行高效微调
实际效果对比
在实际测试中,使用优化后的注意力实现可以带来显著的显存节省。例如,在72B参数的Qwen1.5模型上:
- 使用dp3和flash_attention_2,16张A10显卡可以支持2048 tokens的序列长度
- 相同配置下,默认设置只能支持1024 tokens
总结与建议
Qwen1.5模型显存占用的增加主要源于注意力实现机制的改变。通过合理配置注意力实现方式,开发者可以在保持模型性能的同时,显著降低显存需求。对于不同场景,我们建议:
- 训练场景:优先使用flash_attention_2
- 推理场景:根据硬件条件选择flash_attention_2或sdpa
- 资源受限场景:考虑GPTQ/AWQ量化+QLoRA的组合方案
通过理解这些技术细节并合理应用优化方案,开发者可以更高效地利用Qwen1.5模型进行各种自然语言处理任务。
登录后查看全文
热门项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0123AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
226
2.28 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

暂无简介
Dart
526
116

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
989
586

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
351
1.43 K

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
61
17

GLM-4.6在GLM-4.5基础上全面升级:200K超长上下文窗口支持复杂任务,代码性能大幅提升,前端页面生成更优。推理能力增强且支持工具调用,智能体表现更出色,写作风格更贴合人类偏好。八项公开基准测试显示其全面超越GLM-4.5,比肩DeepSeek-V3.1-Terminus等国内外领先模型。【此简介由AI生成】
Jinja
47
0

喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0

React Native鸿蒙化仓库
JavaScript
214
288