NerfStudio中使用非COLMAP点云初始化Splatfacto的技术解析
2025-05-23 16:28:57作者:范垣楠Rhoda
背景介绍
在3D重建领域,NerfStudio作为一个强大的神经辐射场框架,支持多种3D重建方法。其中Splatfacto方法作为高斯泼溅(Gaussian Splatting)技术的实现,通常依赖COLMAP生成的点云进行初始化。然而在实际应用中,用户可能希望使用其他摄影测量软件(如Metashape)生成的点云数据进行初始化,这就带来了兼容性挑战。
问题现象
当用户尝试使用Metashape等非COLMAP软件生成的点云(.ply格式)进行Splatfacto初始化时,系统会在训练初期(0-100步)出现"element 0 of tensors does not require grad and does not have a grad_fn"的运行时错误。值得注意的是,使用随机初始化或COLMAP生成的点云则不会出现此问题。
根本原因分析
经过技术社区的多方探索,发现该问题主要源于以下几个方面:
- 坐标系差异:不同摄影测量软件使用不同的坐标系约定,导致点云与相机位姿不匹配
- 数据格式差异:虽然.ply文件头看起来相似,但数据类型(double/float)和字段顺序可能存在差异
- 空间变换问题:未正确应用与相机位姿相同的变换矩阵到点云数据
- 场景位置问题:当场景位于Z=0平面以下时,容易引发训练崩溃
解决方案与实践
1. 点云预处理
对于Metashape生成的点云,需要进行以下预处理步骤:
import open3d as o3d
import numpy as np
# 读取点云
cloud = o3d.io.read_point_cloud("spc.ply")
# 应用旋转变换
R1 = cloud.get_rotation_matrix_from_xyz((-np.pi / -2, 0, 0))
cloud.rotate(R1, center=(0, 0, 0))
R2 = cloud.get_rotation_matrix_from_xyz((0, 0, np.pi / 2))
cloud.rotate(R2, center=(0, 0, 0))
# 保存处理后的点云
o3d.io.write_point_cloud("spc_fliped.ply", cloud)
2. 配置文件修改
在transforms.json中添加点云路径配置:
"ply_file_path": "spc_fliped.ply",
"camera_model": "OPENCV",
3. 场景布置建议
在Metashape中进行场景重建时,建议:
- 确保场景位于Z=0平面以上
- 保持场景自然朝向
- 优先使用稀疏点云(而非密集点云)以获得更好的视觉效果
技术实现进展
NerfStudio社区已经将这一解决方案集成到官方代码中。用户现在可以通过ns-process-data工具的--ply参数直接使用Metashape导出的点云,无需手动处理。
最佳实践建议
- 对于摄影测量工作流,建议使用Metashape的稀疏点云而非密集点云
- 在场景重建时注意保持合理的空间布局
- 定期更新NerfStudio以获取最新的兼容性改进
- 训练初期可通过暂停检查点云与相机的对齐情况
总结
通过理解不同摄影测量软件间的坐标系差异并实施适当的预处理,NerfStudio用户现在可以灵活选择多种点云来源进行Splatfacto初始化。这一改进不仅扩展了工具链的兼容性,也为特定场景下的3D重建提供了更多可能性。随着社区的持续贡献,NerfStudio对各种工作流的支持将变得更加完善和用户友好。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Ascend Extension for PyTorch
Python
185
196
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
480
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
276
97
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
380
3.44 K
暂无简介
Dart
623
140
React Native鸿蒙化仓库
JavaScript
242
315
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
648
265
openGauss kernel ~ openGauss is an open source relational database management system
C++
157
210