DriveLM:开启自动驾驶的语言智能新时代
项目介绍
DriveLM 是一个专注于自动驾驶领域的开源项目,旨在通过图视觉问答(Graph Visual Question Answering, GVQA)技术,实现自动驾驶系统与语言模型的深度融合。该项目不仅提供了一个基于nuScenes和CARLA数据集构建的DriveLM-Data,还提出了一种基于视觉语言模型(VLM)的基线方法DriveLM-Agent,用于联合执行GVQA和端到端驾驶任务。DriveLM是CVPR 2024自动驾驶挑战赛的主要赛道之一,为参赛者提供了包括基线、测试数据、提交格式和评估管道在内的完整挑战工具包。
项目技术分析
DriveLM的核心技术在于其提出的GVQA任务,该任务通过图结构的方式将视觉问答(VQA)与自动驾驶的感知、预测和规划任务相结合。这种结构化的问答方式能够更好地模拟人类在驾驶过程中的推理过程,从而提高自动驾驶系统的决策能力和可解释性。
DriveLM-Data 是基于nuScenes和CARLA数据集构建的,涵盖了自动驾驶的感知、预测、规划等多个层面,并通过人类编写的推理逻辑将这些任务连接起来。DriveLM-Agent 则是一个基于视觉语言模型的基线方法,能够在DriveLM-Data上进行推理和驾驶任务的联合执行。
项目及技术应用场景
DriveLM的应用场景非常广泛,特别是在自动驾驶领域。通过将语言模型与自动驾驶系统结合,DriveLM能够实现以下功能:
- 增强感知能力:通过GVQA技术,系统能够更好地理解复杂的交通场景,识别潜在的危险。
- 提高决策效率:通过结构化的问答方式,系统能够更快地做出决策,并提供可解释的推理过程。
- 人机交互:DriveLM使得自动驾驶系统能够与人类用户进行更自然的交互,通过语言指令进行驾驶操作。
项目特点
- 创新性:DriveLM是首个将GVQA技术应用于自动驾驶领域的开源项目,填补了该领域的技术空白。
- 全面性:项目不仅提供了丰富的数据集DriveLM-Data,还提供了基于VLM的基线方法DriveLM-Agent,为开发者提供了完整的工具链。
- 实用性:DriveLM是CVPR 2024自动驾驶挑战赛的主要赛道,具有极高的实用价值和挑战性。
- 可扩展性:项目未来计划扩展到DriveLM-CARLA数据集,并提供更多的推理代码,具有良好的扩展性和持续发展潜力。
结语
DriveLM项目通过将语言智能与自动驾驶技术相结合,为自动驾驶领域带来了新的可能性。无论你是自动驾驶领域的研究者、开发者,还是对自动驾驶技术感兴趣的爱好者,DriveLM都值得你深入探索和使用。加入DriveLM,一起开启自动驾驶的语言智能新时代!
项目链接: DriveLM项目页面
挑战赛链接: CVPR 2024自动驾驶挑战赛
论文链接: arXiv论文
测试服务器: Hugging Face测试服务器
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00