TensorRT Polygraphy工具中分批标记输出层的解决方案
2025-05-20 20:25:01作者:尤辰城Agatha
在使用NVIDIA TensorRT生态中的Polygraphy工具进行模型转换和验证时,开发者经常会遇到显存不足的问题,特别是处理大尺寸输入的视觉Transformer(ViT)模型时。本文将介绍如何通过分批标记输出层来解决这一问题。
问题背景
当使用Polygraphy工具运行大型模型时,特别是输入尺寸较大的情况(如[3,1333,1333]),即使使用高端显卡如RTX 4090(24GB显存)也可能出现显存不足(OOM)的错误。这是因为Polygraphy默认会标记所有层的输出用于验证,这会显著增加显存占用。
解决方案
Polygraphy提供了--trt-outputs参数来指定需要标记的输出层。我们可以通过分批标记层输出的方式来解决显存不足问题:
-
手动分批标记:可以手动指定5-100个层为一组进行验证
--trt-outputs "layer0 layer1 layer2 layer3 layer4" -
使用文件批量输入:更高效的方式是将层名称列表存储在文本文件中,然后通过脚本读取
实现方法
以下是使用Bash脚本从文件中读取层名称列表的实现方案:
mark_layers_txt="layers.txt"
mark_layers=""
while IFS= read -r line; do
if [ -n "$mark_layers" ]; then
mark_layers+=" "
fi
mark_layers+="$line"
done < ${mark_layers_txt}
# 在Polygraphy命令中使用
polygraphy run \
${onnx_path} \
--trt \
--trt-outputs ${mark_layers} \
# 其他参数...
技术要点
- 层选择策略:建议根据模型结构选择关键层进行验证,而不是简单均匀分组
- 显存监控:在运行过程中监控显存使用情况,动态调整每批的层数
- 验证完整性:确保所有关键层最终都被验证到,避免遗漏重要节点
最佳实践
对于ViT等大型模型,建议:
- 先使用小批量输入验证模型转换的正确性
- 逐步增加批量大小和标记层数,找到显存使用的平衡点
- 对于固定工作负载,可以建立显存使用模型来预测最佳分批策略
这种方法不仅适用于ViT模型,对于其他大型深度学习模型的TensorRT转换和验证同样有效。通过合理的分批策略,可以在有限显存资源下完成大型模型的验证工作。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
new-apiAI模型聚合管理中转分发系统,一个应用管理您的所有AI模型,支持将多种大模型转为统一格式调用,支持OpenAI、Claude、Gemini等格式,可供个人或者企业内部管理与分发渠道使用。🍥 A Unified AI Model Management & Distribution System. Aggregate all your LLMs into one app and access them via an OpenAI-compatible API, with native support for Claude (Messages) and Gemini formats.JavaScript01
idea-claude-code-gui一个功能强大的 IntelliJ IDEA 插件,为开发者提供 Claude Code 和 OpenAI Codex 双 AI 工具的可视化操作界面,让 AI 辅助编程变得更加高效和直观。Java01
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
519
3.69 K
暂无简介
Dart
760
182
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
569
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
160
方舟分析器:面向ArkTS语言的静态程序分析框架
TypeScript
169
53
Ascend Extension for PyTorch
Python
321
373
React Native鸿蒙化仓库
JavaScript
301
347