Mimalloc内存管理器中mi_heap_collect的优化改进
背景介绍
Mimalloc是一款由微软开发的高性能内存分配器,以其出色的性能和低内存开销而闻名。在最新版本v2.0.9中,开发者发现了一个关于内存回收的重要问题:在某些特定场景下调用mi_heap_collect函数后,未使用的内存页面未能完全解除提交(decommit),导致实际内存占用(RSS)与预期不符。
问题现象
通过两个对比测试用例可以清晰地复现这个问题:
-
顺序分配测试:先分配200个大块(32,288字节),再分配100,000个小块(3,584字节),然后释放所有小块后内存回收正常。
-
交替分配测试:交替分配大块和小块(每400个小块后分配1个大块),释放小块后调用mi_heap_collect,内存未能完全回收,保留了大量未使用的提交内存。
问题的本质在于内存段的分配模式影响了后续的回收行为。当大块和小块内存分配在相同的内存段中时,即使调用强制回收(mi_heap_collect with force=true),部分未使用的页面仍保持提交状态。
技术分析
Mimalloc的内存管理采用分段(segment)机制,每个段包含多个内存页。问题的核心原因在于:
-
延迟回收机制:Mimalloc设计了延迟回收策略(mi_option_decommit_extend_delay等选项),目的是避免频繁的内存提交/解除提交操作带来的性能开销。
-
段内混合分配:当大块和小块内存混合分配在同一段中时,即使部分页面已空闲,由于段中仍有活跃分配,导致整个段的回收变得保守。
-
收集操作不够彻底:原有的mi_heap_collect实现未能充分考虑强制回收场景下应该更积极地回收内存。
解决方案
开发者对Mimalloc进行了以下关键改进:
-
增强了mi_heap_collect在强制模式(true)下的回收策略,使其更积极地回收未使用的内存页。
-
优化了段内页面的回收逻辑,确保在强制收集时能够解除更多空闲页面的提交状态。
-
调整了相关参数的默认行为,以平衡性能和内存使用效率。
验证结果
改进后的版本通过了严格的测试验证:
-
在交替分配测试场景下,内存回收效果与顺序分配测试一致。
-
实际内存占用(RSS)降低到预期水平(测试中从319.9 MiB降至6.4 MiB)。
-
保持了Mimalloc原有的高性能特性,没有引入明显的性能回退。
使用建议
对于关注内存占用的应用,建议:
-
更新到包含此修复的Mimalloc版本。
-
在内存敏感场景中,可以适当调用mi_heap_collect(true)进行强制回收。
-
注意设置MIMALLOC_ARENA_EAGER_COMMIT=0环境变量以获得准确的内存统计。
总结
这次优化体现了Mimalloc团队对内存管理细节的持续关注。通过改进回收策略,使得内存分配器在复杂使用场景下仍能保持高效的内存利用率,这对于长期运行的内存敏感型应用尤为重要。开发者可以期待在后续正式版本中获取这些改进。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C088
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python057
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0136
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00