Stagehand 2.0发布:浏览器自动化工具的重大升级
Stagehand是一个现代化的浏览器自动化工具,它通过简化复杂的浏览器交互流程,让开发者能够更高效地实现网页抓取、测试自动化等任务。与传统的浏览器自动化工具不同,Stagehand采用了更智能的方式处理网页交互,大大降低了编写和维护自动化脚本的复杂度。
近日,Stagehand团队正式发布了2.0版本,这是该项目自推出以来最重要的一次更新。新版本在性能、功能和开发者体验方面都有显著提升,特别是引入了革命性的agent功能,使得浏览器自动化达到了新的高度。
核心功能增强
1. 强大的agent系统
Stagehand 2.0最引人注目的新特性是内置的agent系统。这个功能允许开发者通过简单的API调用就能实现复杂的多步骤浏览器交互流程。agent可以理解自然语言指令,自动规划执行路径,处理意外情况,大大简化了复杂自动化任务的开发工作。
agent系统支持多种后端,包括本地运行的计算机使用模型(CUA)和Browserbase的Open Operator服务。开发者可以根据需求选择最适合的后端,平衡成本与性能。
2. 性能大幅提升
新版本对核心的act和extract方法进行了深度优化,执行速度显著提高。特别是在处理大型网页或复杂交互场景时,性能提升更为明显。团队重构了底层实现,移除了冗余操作,优化了资源加载策略,使得整体运行效率提升了30%以上。
3. 增强的日志与调试能力
Stagehand 2.0采用了Pino日志库重构了日志系统,提供了更清晰、结构化的运行日志。新的日志系统能够自动记录关键操作节点,包括页面导航、DOM操作和网络请求等,帮助开发者快速定位问题。
此外,新增的stagehand.history数组会记录所有关键方法的调用历史,包括act、extract、observe和goto等操作。这个功能对于调试复杂流程和事后分析特别有用。
开发者体验改进
1. 更完善的TypeScript支持
2.0版本增强了TypeScript类型定义,提供了更精确的API提示和错误检查。开发者现在可以获得更完善的代码补全和类型推断,大大提高了开发效率。
2. 自定义错误类
新版本引入了一系列自定义错误类,取代了通用的Error对象。这些特定场景的错误类提供了更详细的错误信息和上下文数据,使得错误处理和调试更加直观。
3. 改进的配置选项
Stagehand构造函数进行了精简,移除了不推荐使用的字段,同时增加了对自定义CDP URL的支持。开发者现在可以更灵活地配置底层浏览器实例,满足各种特殊需求。
技术细节优化
1. 增强的提取能力
extract方法现在默认使用浏览器的无障碍树(A11Y Tree)作为数据源,这比传统的DOM解析更稳定可靠。无障碍树包含了更语义化的页面结构信息,能够更好地处理动态内容和复杂布局。
2. 滚动支持
新版本完善了对页面滚动的支持,act方法现在可以处理"滚动到下一部分"等指令,这对于处理无限滚动或分页内容特别有用。
3. CDP截图支持
Stagehand 2.0增加了通过Chrome DevTools Protocol(CDP)进行截图的能力。相比传统的截图方式,CDP截图质量更高,性能更好,特别是在处理复杂CSS效果时优势明显。
使用建议
对于现有用户升级到2.0版本,建议:
- 仔细阅读变更日志,了解API变化
- 逐步迁移关键自动化流程,先在小范围测试
- 充分利用新的agent功能重构复杂交互逻辑
- 使用新的日志和历史功能优化调试流程
对于新用户,Stagehand 2.0提供了更平缓的学习曲线和更强大的开箱即用功能,是开始浏览器自动化项目的理想选择。
总的来说,Stagehand 2.0通过引入agent系统、优化核心功能和改善开发者体验,将浏览器自动化工具的能力提升到了新的水平。这些改进使得开发者能够更专注于业务逻辑,而不是底层实现细节,大大提高了开发效率和自动化质量。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00