将Jupyter Notebook转化为Web应用的利器——Mercury
项目介绍
Mercury是一款强大的开源工具,旨在将Jupyter Notebook转化为交互式Web应用。通过Mercury,用户可以在Python Notebook中添加交互式小部件,从而轻松地将Notebook分享为Web应用。无需重写Notebook到Web框架,Mercury提供了一套简单易用的小部件,支持单元格的重新执行,极大地简化了数据科学家和开发者的分享流程。
项目技术分析
Mercury的核心技术在于其能够无缝集成Jupyter Notebook,并通过添加交互式小部件来增强Notebook的功能。这些小部件包括输入小部件、输出小部件和自定义小部件,用户可以根据需求选择合适的小部件来实现特定的交互功能。此外,Mercury还支持与众多Python库的集成,如Scikit-Learn、Pandas、Plotly等,使得用户可以在Notebook中使用这些库的功能,并将其转化为Web应用。
项目及技术应用场景
Mercury的应用场景非常广泛,主要包括:
- Web应用开发:将Jupyter Notebook转化为美观的Web应用,方便用户在线交互。
- 交互式演示:创建带有小部件的交互式演示文稿,支持在演示过程中重新计算幻灯片内容。
- 静态网站生成:将Notebook分享为静态网站,便于内容的分发和展示。
- 数据仪表盘:构建带有小部件的数据仪表盘,实时展示和分析数据。
- 报告生成:创建带有PDF导出、自动调度和邮件通知功能的报告(即将推出)。
- REST API服务:将Python Notebook作为REST API端点提供服务(即将推出)。
项目特点
Mercury具有以下显著特点:
- 无需前端经验:通过Python代码即可添加小部件,无需前端开发经验。
- 代码隐藏与显示:用户可以选择隐藏或显示Notebook的代码,保护知识产权。
- 导出功能:支持将执行后的Notebook导出为PDF或HTML格式。
- 多Notebook分享:无限制地分享多个Notebook,方便团队协作。
- 嵌入功能:支持将Notebook嵌入到任何网站中,增强内容的可访问性。
- 文件上传与下载:轻松实现Notebook中的文件上传和下载功能。
- 身份验证:即将支持为Notebook添加身份验证功能,增强安全性。
- 自动执行:即将支持自动调度Notebook的执行,实现自动化任务。
结语
Mercury为数据科学家和开发者提供了一个强大的工具,使得将Jupyter Notebook转化为Web应用变得简单而高效。无论是用于数据分析、演示、报告生成还是Web应用开发,Mercury都能满足您的需求。立即尝试Mercury,体验将Notebook转化为Web应用的便捷与乐趣!
📚 了解更多关于Mercury的信息,请访问RunMercury.com。
安装与使用
安装
Mercury兼容Python 3.7及以上版本。您可以通过以下命令进行安装:
pip install mercury
或者使用conda安装:
conda install -c conda-forge mercury
运行Demo
通过以下命令运行Mercury的Demo Notebooks:
mercury run demo
访问127.0.0.1:8000查看Demo Notebooks。
部署
Mercury提供了多种部署选项,包括使用Docker Compose在VPS上自托管、使用ngrok、Hugging Face Spaces等。此外,Mercury还提供了商业友好的Pro版本,支持更多高级功能和定制化选项。
🚀 立即开始使用Mercury,将您的Jupyter Notebook转化为强大的Web应用吧!
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00