Project-Graph 导出功能排序逻辑优化:从连接顺序到角度判断
2025-07-08 05:08:51作者:裴麒琰
背景
在思维导图和数据可视化工具Project-Graph中,导出功能是一个重要特性。当前版本中,当用户选择导出纯文本内容时,系统会按照节点之间的连接顺序来遍历和导出子节点。然而,在实际使用过程中,频繁调整连接会导致边的连接顺序变得混乱,给用户带来不便。
问题分析
现有排序逻辑基于边的连接顺序,这种设计存在以下局限性:
- 连接顺序易受干扰:用户频繁调整连接后,边的存储顺序可能与实际视觉顺序不符
- 缺乏直观性:视觉上排列整齐的节点可能因为连接顺序问题导致导出结果不符合预期
- 维护成本高:用户需要不断重新连线来调整导出顺序
优化方案
角度判断排序算法
新的排序逻辑采用基于角度的判断方法,核心思想是根据子节点相对于父节点的位置角度来决定遍历顺序:
-
角度分区:将360度平面划分为四个象限
- 第一象限:0°-90°(右上方)
- 第二象限:90°-180°(左上方)
- 第三象限:180°-270°(左下方)
- 第四象限:270°-360°(右下方)
-
排序规则:
- 下方节点(三、四象限):采用从左到右逆时针遍历
- 右侧节点(一、四象限):采用从上到下顺时针遍历
- 上方节点(一、二象限):采用从左到右顺时针遍历
- 左侧节点(二、三象限):采用从上到下逆时针遍历
-
特殊情况处理:当节点角度落在不连续的两个象限时,保留原有的连接顺序排序
实现考量
在实际实现过程中,开发团队做了以下调整和优化:
- 视觉一致性优先:对于右侧或下侧的节点,最终采用了按节点位置排序而非严格角度排序,以更好地匹配曲线连接的视觉效果
- 性能优化:角度计算使用高效的数学函数,确保在大规模节点时仍能快速排序
- 边界处理:精确处理节点位于坐标轴上的特殊情况
技术实现
核心算法伪代码:
function sortChildrenNodes(parent, children) {
// 计算每个子节点相对于父节点的角度
const nodesWithAngles = children.map(child => {
const dx = child.x - parent.x;
const dy = child.y - parent.y;
const angle = Math.atan2(dy, dx) * 180 / Math.PI;
return {node: child, angle: angle < 0 ? angle + 360 : angle};
});
// 根据角度区域应用不同的排序规则
const primaryQuadrant = determinePrimaryQuadrant(nodesWithAngles);
switch(primaryQuadrant) {
case 'bottom':
return sortLeftToRightCCW(nodesWithAngles);
case 'right':
return sortTopToBottomCW(nodesWithAngles);
case 'top':
return sortLeftToRightCW(nodesWithAngles);
case 'left':
return sortTopToBottomCCW(nodesWithAngles);
default:
return originalConnectionOrder(nodesWithAngles);
}
}
用户体验提升
这一优化带来了显著的体验改进:
- 更直观的导出结果:导出的文本顺序与视觉排列更加一致
- 减少重复操作:用户无需为了导出顺序而频繁调整连接
- 自适应布局:自动适应不同的节点布局风格(垂直、水平或其他自定义布局)
总结
Project-Graph通过将导出排序逻辑从简单的连接顺序改为基于角度的智能判断,显著提升了工具的实用性和用户体验。这一改进展示了如何通过合理的算法设计来解决实际应用中的痛点问题,同时也为类似图形工具的排序问题提供了有价值的参考方案。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.74 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
404
暂无简介
Dart
771
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355