PonderV2 开源项目使用教程
2025-04-18 12:54:58作者:何举烈Damon
1. 项目介绍
PonderV2 是一个用于3D基础模型学习的综合预训练框架,旨在通过不同的可微分神经渲染方法学习点云表示,建立起3D与2D世界的桥梁。此框架提供了一个通用预训练范式,有助于高效3D表示的获取,为3D基础模型的建立铺平道路。
2. 项目快速启动
在开始之前,请确保您的系统满足以下要求:
- Ubuntu: 18.04 或更高版本
- CUDA: 11.3 或更高版本
- PyTorch: 1.10.0 或更高版本
以下是基于 Conda 环境的安装步骤:
# 创建 Conda 环境
conda create -n ponderv2 python=3.8 -y
conda activate ponderv2
# 安装 PyTorch及相关依赖
conda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=11.3 -c pytorch -y
conda install h5py pyyaml -c anaconda -y
conda install sharedarray tensorboard tensorboardx addict einops scipy plyfile termcolor timm -c conda-forge -y
conda install pytorch-cluster pytorch-scatter pytorch-sparse -c pyg -y
# 安装其他必要包
pip install torch-geometric yapf==0.40.1 opencv-python open3d==0.10.0 imageio
pip install git+https://github.com/openai/CLIP.git
pip install spconv-cu113
接下来,根据您的需要运行以下预训练或微调脚本:
# 预训练 PonderV2 (室内) 在单个 ScanNet 数据集上
bash scripts/train.sh -g 8 -d scannet -c pretrain-ponder-spunet-v1m1-0-base -n ponderv2-pretrain-sc
# 微调 PonderV2 在 ScanNet 语义分割下游任务上
bash scripts/train.sh -g 8 -d scannet -c semseg-ppt-v1m1-0-sc-s3-st-spunet-lovasz-ft -n ponderv2-semseg-ft -w /path/to/checkpoint
# 测试微调后的模型
bash scripts/test.sh -g 8 -d scannet -n ponderv2-semseg-ft -w checkpoint_name
3. 应用案例和最佳实践
PonderV2 可以用于多种下游任务,例如语义分割、实例分割等。以下是一些最佳实践:
- 使用 Point Prompt Training (PPT) 进行预训练,可以提高模型在下游任务上的表现。
- 在微调阶段,选择适当的配置文件和损失函数可以优化模型性能。
- 对于不同的数据集,可能需要调整数据预处理和增强策略。
4. 典型生态项目
PonderV2 是3D视觉领域的一个典型项目,其生态系统中还包括以下项目:
- SDFStudio: 用于3D形状建模和处理的工具。
- Pointcept: 一个用于点云处理的库。
以上就是PonderV2开源项目的使用教程,希望对您有所帮助。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin08
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
532
3.75 K
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
336
178
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
886
596
Ascend Extension for PyTorch
Python
340
405
暂无简介
Dart
772
191
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
247
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
416
4.21 K
React Native鸿蒙化仓库
JavaScript
303
355