首页
/ PonderV2 开源项目使用教程

PonderV2 开源项目使用教程

2025-04-18 12:01:15作者:何举烈Damon

1. 项目介绍

PonderV2 是一个用于3D基础模型学习的综合预训练框架,旨在通过不同的可微分神经渲染方法学习点云表示,建立起3D与2D世界的桥梁。此框架提供了一个通用预训练范式,有助于高效3D表示的获取,为3D基础模型的建立铺平道路。

2. 项目快速启动

在开始之前,请确保您的系统满足以下要求:

  • Ubuntu: 18.04 或更高版本
  • CUDA: 11.3 或更高版本
  • PyTorch: 1.10.0 或更高版本

以下是基于 Conda 环境的安装步骤:

# 创建 Conda 环境
conda create -n ponderv2 python=3.8 -y
conda activate ponderv2

# 安装 PyTorch及相关依赖
conda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=11.3 -c pytorch -y
conda install h5py pyyaml -c anaconda -y
conda install sharedarray tensorboard tensorboardx addict einops scipy plyfile termcolor timm -c conda-forge -y
conda install pytorch-cluster pytorch-scatter pytorch-sparse -c pyg -y

# 安装其他必要包
pip install torch-geometric yapf==0.40.1 opencv-python open3d==0.10.0 imageio
pip install git+https://github.com/openai/CLIP.git
pip install spconv-cu113

接下来,根据您的需要运行以下预训练或微调脚本:

# 预训练 PonderV2 (室内) 在单个 ScanNet 数据集上
bash scripts/train.sh -g 8 -d scannet -c pretrain-ponder-spunet-v1m1-0-base -n ponderv2-pretrain-sc

# 微调 PonderV2 在 ScanNet 语义分割下游任务上
bash scripts/train.sh -g 8 -d scannet -c semseg-ppt-v1m1-0-sc-s3-st-spunet-lovasz-ft -n ponderv2-semseg-ft -w /path/to/checkpoint

# 测试微调后的模型
bash scripts/test.sh -g 8 -d scannet -n ponderv2-semseg-ft -w checkpoint_name

3. 应用案例和最佳实践

PonderV2 可以用于多种下游任务,例如语义分割、实例分割等。以下是一些最佳实践:

  • 使用 Point Prompt Training (PPT) 进行预训练,可以提高模型在下游任务上的表现。
  • 在微调阶段,选择适当的配置文件和损失函数可以优化模型性能。
  • 对于不同的数据集,可能需要调整数据预处理和增强策略。

4. 典型生态项目

PonderV2 是3D视觉领域的一个典型项目,其生态系统中还包括以下项目:

  • SDFStudio: 用于3D形状建模和处理的工具。
  • Pointcept: 一个用于点云处理的库。

以上就是PonderV2开源项目的使用教程,希望对您有所帮助。

登录后查看全文
热门项目推荐

最新内容推荐

项目优选

收起
kernelkernel
deepin linux kernel
C
22
6
docsdocs
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
139
1.91 K
nop-entropynop-entropy
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0
金融AI编程实战金融AI编程实战
为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Jupyter Notebook
73
63
Cangjie-ExamplesCangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
344
1.29 K
RuoYi-Vue3RuoYi-Vue3
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
921
551
PaddleOCRPaddleOCR
飞桨多语言OCR工具包(实用超轻量OCR系统,支持80+种语言识别,提供数据标注与合成工具,支持服务器、移动端、嵌入式及IoT设备端的训练与部署) Awesome multilingual OCR toolkits based on PaddlePaddle (practical ultra lightweight OCR system, support 80+ languages recognition, provide data annotation and synthesis tools, support training and deployment among server, mobile, embedded and IoT devices)
Python
47
1
easy-eseasy-es
Elasticsearch 国内Top1 elasticsearch搜索引擎框架es ORM框架,索引全自动智能托管,如丝般顺滑,与Mybatis-plus一致的API,屏蔽语言差异,开发者只需要会MySQL语法即可完成对Es的相关操作,零额外学习成本.底层采用RestHighLevelClient,兼具低码,易用,易拓展等特性,支持es独有的高亮,权重,分词,Geo,嵌套,父子类型等功能...
Java
36
8
ohos_react_nativeohos_react_native
React Native鸿蒙化仓库
C++
193
273
leetcodeleetcode
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
59
16