PonderV2 开源项目使用教程
2025-04-18 18:40:35作者:何举烈Damon
1. 项目介绍
PonderV2 是一个用于3D基础模型学习的综合预训练框架,旨在通过不同的可微分神经渲染方法学习点云表示,建立起3D与2D世界的桥梁。此框架提供了一个通用预训练范式,有助于高效3D表示的获取,为3D基础模型的建立铺平道路。
2. 项目快速启动
在开始之前,请确保您的系统满足以下要求:
- Ubuntu: 18.04 或更高版本
- CUDA: 11.3 或更高版本
- PyTorch: 1.10.0 或更高版本
以下是基于 Conda 环境的安装步骤:
# 创建 Conda 环境
conda create -n ponderv2 python=3.8 -y
conda activate ponderv2
# 安装 PyTorch及相关依赖
conda install pytorch==1.12.1 torchvision==0.13.1 torchaudio==0.12.1 cudatoolkit=11.3 -c pytorch -y
conda install h5py pyyaml -c anaconda -y
conda install sharedarray tensorboard tensorboardx addict einops scipy plyfile termcolor timm -c conda-forge -y
conda install pytorch-cluster pytorch-scatter pytorch-sparse -c pyg -y
# 安装其他必要包
pip install torch-geometric yapf==0.40.1 opencv-python open3d==0.10.0 imageio
pip install git+https://github.com/openai/CLIP.git
pip install spconv-cu113
接下来,根据您的需要运行以下预训练或微调脚本:
# 预训练 PonderV2 (室内) 在单个 ScanNet 数据集上
bash scripts/train.sh -g 8 -d scannet -c pretrain-ponder-spunet-v1m1-0-base -n ponderv2-pretrain-sc
# 微调 PonderV2 在 ScanNet 语义分割下游任务上
bash scripts/train.sh -g 8 -d scannet -c semseg-ppt-v1m1-0-sc-s3-st-spunet-lovasz-ft -n ponderv2-semseg-ft -w /path/to/checkpoint
# 测试微调后的模型
bash scripts/test.sh -g 8 -d scannet -n ponderv2-semseg-ft -w checkpoint_name
3. 应用案例和最佳实践
PonderV2 可以用于多种下游任务,例如语义分割、实例分割等。以下是一些最佳实践:
- 使用 Point Prompt Training (PPT) 进行预训练,可以提高模型在下游任务上的表现。
- 在微调阶段,选择适当的配置文件和损失函数可以优化模型性能。
- 对于不同的数据集,可能需要调整数据预处理和增强策略。
4. 典型生态项目
PonderV2 是3D视觉领域的一个典型项目,其生态系统中还包括以下项目:
- SDFStudio: 用于3D形状建模和处理的工具。
- Pointcept: 一个用于点云处理的库。
以上就是PonderV2开源项目的使用教程,希望对您有所帮助。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C051
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0127
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
446
3.35 K
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
825
398
Ascend Extension for PyTorch
Python
250
285
暂无简介
Dart
702
166
React Native鸿蒙化仓库
JavaScript
278
329
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
10
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.24 K
680
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
147
51
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19