KeystoneML:Apache Spark上的端到端机器学习简化方案
2025-05-20 18:48:22作者:瞿蔚英Wynne
1. 项目介绍
KeystoneML 是一个开源项目,旨在简化在 Apache Spark 上构建端到端机器学习管道的过程。它提供了丰富的工具和库,允许数据科学家和工程师以模块化和可扩展的方式开发机器学习模型。
2. 项目快速启动
在开始之前,请确保您的系统中已经安装了 Apache Spark。
克隆项目
git clone https://github.com/amplab/keystone.git
cd keystone
构建项目
./sbt/sbt assembly
make # 构建KeystoneML使用的本地库
运行示例管道
以下是一个简单的示例,展示了如何使用 KeystoneML 运行一个 MNIST 数据集的随机傅里叶变换管道。
首先,获取数据:
wget http://mnist-data.s3.amazonaws.com/train-mnist-dense-with-labels.data
wget http://mnist-data.s3.amazonaws.com/test-mnist-dense-with-labels.data
然后,运行管道:
export SPARK_HOME=~/spark-1.3.1-bin-cdh4 # 确保与KeystoneML构建时使用的Spark版本相匹配
KEYSTONE_MEM=4g ./bin/run-pipeline.sh \
keystoneml.pipelines.images.mnist.MnistRandomFFT \
--trainLocation ./train-mnist-dense-with-labels.data \
--testLocation ./test-mnist-dense-with-labels.data \
--numFFTs 4 \
--blockSize 2048
确保将 SPARK_HOME 环境变量设置为您的 Spark 安装路径。
3. 应用案例和最佳实践
构建机器学习管道
使用 KeystoneML 构建机器学习管道时,应当遵循以下最佳实践:
- 将数据预处理、特征提取、模型训练和评估等步骤模块化。
- 利用 Apache Spark 的分布式计算能力处理大规模数据集。
- 使用 KeystoneML 提供的组件,如节点和管道,以便于创建灵活且可扩展的管道。
数据预处理
在开始训练模型之前,数据预处理是至关重要的一步。KeystoneML 提供了多种预处理节点,如标准化、归一化等。
模型训练与评估
选择合适的算法进行模型训练,并使用交叉验证等技术来评估模型性能。
模型部署
一旦模型训练完成并评估其性能,就可以将其部署到生产环境中,KeystoneML 支持将模型导出为 PMML 或其他格式,便于在生产环境中部署。
4. 典型生态项目
KeystoneML 是 Apache Spark 生态系统的一部分,与其他开源项目如 Spark MLlib、MLflow 等相辅相成。以下是一些典型的生态项目:
- Spark MLlib:Apache Spark 的机器学习库,提供了多种算法和工具。
- MLflow:用于机器学习项目的生命周期管理的开源平台,支持实验跟踪、项目 reproducibility 和模型部署。
登录后查看全文
热门项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 JDK 8u381 Windows x64 安装包:企业级Java开发环境的完美选择 开源电子设计自动化利器:KiCad EDA全方位使用指南 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 Adobe Acrobat XI Pro PDF拼版插件:提升排版效率的专业利器 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Jetson TX2开发板官方资源完全指南:从入门到精通 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 ONVIF设备模拟器:开发测试必备的智能安防仿真工具
项目优选
收起
deepin linux kernel
C
24
9
暂无简介
Dart
669
155
Ascend Extension for PyTorch
Python
219
236
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
660
308
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
392
3.82 K
React Native鸿蒙化仓库
JavaScript
259
322
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.19 K
653
仓颉编程语言运行时与标准库。
Cangjie
141
879