Swift项目中Qwen25VL-72B模型GRPO训练卡顿问题分析与解决方案
2025-05-31 05:02:30作者:邵娇湘
问题背景
在Swift项目中使用Qwen25VL-72B大模型进行GRPO训练时,研究人员遇到了训练过程在初始阶段就卡住的问题。该问题出现在8块A100 80GB GPU环境下,采用LoRA微调方式进行训练。
环境配置分析
从训练配置来看,研究人员使用了以下关键参数:
- 模型:Qwen2.5-VL-72B-Instruct
- 训练类型:LoRA微调
- 数据类型:bfloat16
- 批处理大小:每设备1个样本
- 梯度累积步数:1
- 优化器:DeepSpeed Zero3 Offload
- 并行配置:tensor_parallel_size=8
可能的问题原因
-
内存不足:72B参数量的模型即使在LoRA微调下也需要大量显存,特别是在多模态场景下,图像处理会额外消耗显存资源。
-
DeepSpeed配置问题:Zero3 Offload虽然可以节省显存,但不当的配置可能导致通信瓶颈或内存交换效率低下。
-
vLLM兼容性问题:vLLM 0.7.3版本可能存在与当前模型架构的兼容性问题。
-
多模态数据处理瓶颈:图像和文本的联合处理可能在某些环节出现阻塞。
解决方案
经过Swift项目团队的验证,以下是针对Qwen25VL-72B模型GRPO训练的最佳实践:
-
显存优化配置:
- 合理设置
vllm_gpu_memory_utilization参数 - 调整
max_pixels参数控制图像分辨率 - 使用梯度检查点技术减少显存占用
- 合理设置
-
DeepSpeed优化:
- 调整offload参数平衡计算和内存交换
- 优化
move_model_batches参数提升数据交换效率
-
并行策略优化:
- 根据GPU数量合理设置tensor并行度
- 考虑结合pipeline并行策略
-
训练参数调整:
- 适当降低初始学习率
- 增加warmup步数
- 调整batch size和梯度累积步数
实施建议
对于希望使用Qwen25VL-72B进行GRPO训练的研究人员,建议:
- 从官方提供的训练脚本开始,逐步调整参数
- 监控训练初期的显存使用情况
- 先在小规模数据上验证训练流程
- 关注日志中的警告和错误信息
- 考虑使用更新的vLLM版本以获得更好的兼容性
总结
Qwen25VL-72B作为超大规模多模态模型,其训练过程需要特别注意显存管理和并行策略。通过合理的参数配置和优化技术,可以成功实现GRPO训练。Swift项目团队已经验证了可行的训练方案,研究人员可以参考这些最佳实践来开展相关工作。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Prover-7BSpark-Prover 是由科大讯飞团队开发的专用大型语言模型,专为 Lean4 中的自动定理证明而设计。该模型采用创新的三阶段训练策略,显著增强了形式化推理能力,在同等规模的开源模型中实现了最先进的性能。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
暂无简介
Dart
615
138
Ascend Extension for PyTorch
Python
165
184
React Native鸿蒙化仓库
JavaScript
240
314
仓颉编译器源码及 cjdb 调试工具。
C++
126
854
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
369
3.16 K
TorchAir 支持用户基于PyTorch框架和torch_npu插件在昇腾NPU上使用图模式进行推理。
Python
257
91
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
475
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
646
255