SRPC框架中实现服务串行执行的解决方案
2025-07-05 12:19:28作者:姚月梅Lane
背景介绍
SRPC是一个基于Workflow的高性能RPC框架,在实际开发中,我们经常会遇到需要保证某些服务按顺序串行执行的需求。例如在模型推理场景中,我们需要先初始化模型获得句柄,然后才能进行推理计算,且推理请求需要保证顺序执行以避免并发问题。
问题分析
在SRPC框架中,服务默认是多线程并行处理的,这会导致以下问题:
- 初始化服务可能被多个线程同时执行,造成资源竞争
- 推理服务可能并发执行,导致模型状态不一致
- 无法保证初始化完成后再执行推理请求
解决方案
使用WFResourcePool实现串行控制
Workflow框架提供了WFResourcePool组件,可以很好地解决服务串行化的问题。其核心思想是创建一个资源池,服务执行前需要获取资源,执行完毕后释放资源。
#include <workflow/WFResourcePool.h>
class RemoteServiceImpl : public Remote::Service
{
public:
RemoteServiceImpl() : respool_init(1), respool_forward(1) { }
private:
WFResourcePool respool_init; // 初始化服务资源池
WFResourcePool respool_forward; // 推理服务资源池
public:
void Init(InitRequest* request, InitResponse* response, srpc::RPCContext* ctx) override
{
InitTask* task = InitFactory::create_thread_task("init", init_routine, init_callback);
InitInput* input = task->get_input();
input->encrtyption = request->encrtyption();
input->device = request->device();
input->use_gpu = request->use_gpu();
WFConditional* cond = respool_init.get(task);
ctx->get_series()->push_back(cond);
}
// 在init_callback中需要释放资源
void init_callback(InitTask* task)
{
// ...处理逻辑...
respool_init.post(nullptr); // 释放资源
}
};
实现原理
- 创建容量为1的资源池,确保同一时间只有一个任务能获取到资源
- 将任务封装为WFConditional,只有获取到资源才会执行
- 任务完成后通过post()释放资源,允许下一个任务执行
定时器方案替代
如果不使用计算线程,也可以采用定时器方案:
void Init(InitRequest* request, InitResponse* response, srpc::RPCContext* ctx)
{
WFTimerTask* timer = WFTaskFactory::create_timer_task(0, init_callback);
WFConditional* cond = respool_init.get(timer);
ctx->get_series()->push_back(cond);
}
最佳实践
- 为每个需要串行执行的服务创建独立的资源池
- 资源池容量设为1保证严格串行
- 务必在回调函数中释放资源
- 合理设置超时时间避免死锁
- 考虑错误处理场景的资源释放
总结
通过WFResourcePool组件,我们可以优雅地实现SRPC服务的串行执行控制。这种方法不仅适用于模型推理场景,也可以广泛应用于需要保证执行顺序的各种业务场景。相比传统的锁机制,这种方案更加高效且不易出现死锁问题。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
AI内容魔方AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03
Spark-Scilit-X1-13BFLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile013
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
deepin linux kernel
C
24
6
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
237
2.36 K
仓颉编程语言运行时与标准库。
Cangjie
122
95
暂无简介
Dart
539
118
仓颉编译器源码及 cjdb 调试工具。
C++
115
83
React Native鸿蒙化仓库
JavaScript
216
291
Ascend Extension for PyTorch
Python
77
109
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
997
588
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
580
114
LLVM 项目是一个模块化、可复用的编译器及工具链技术的集合。此fork用于添加仓颉编译器的功能,并支持仓颉编译器项目。
C++
32
26