SRPC框架中实现服务串行执行的解决方案
2025-07-05 22:26:36作者:姚月梅Lane
背景介绍
SRPC是一个基于Workflow的高性能RPC框架,在实际开发中,我们经常会遇到需要保证某些服务按顺序串行执行的需求。例如在模型推理场景中,我们需要先初始化模型获得句柄,然后才能进行推理计算,且推理请求需要保证顺序执行以避免并发问题。
问题分析
在SRPC框架中,服务默认是多线程并行处理的,这会导致以下问题:
- 初始化服务可能被多个线程同时执行,造成资源竞争
- 推理服务可能并发执行,导致模型状态不一致
- 无法保证初始化完成后再执行推理请求
解决方案
使用WFResourcePool实现串行控制
Workflow框架提供了WFResourcePool组件,可以很好地解决服务串行化的问题。其核心思想是创建一个资源池,服务执行前需要获取资源,执行完毕后释放资源。
#include <workflow/WFResourcePool.h>
class RemoteServiceImpl : public Remote::Service
{
public:
RemoteServiceImpl() : respool_init(1), respool_forward(1) { }
private:
WFResourcePool respool_init; // 初始化服务资源池
WFResourcePool respool_forward; // 推理服务资源池
public:
void Init(InitRequest* request, InitResponse* response, srpc::RPCContext* ctx) override
{
InitTask* task = InitFactory::create_thread_task("init", init_routine, init_callback);
InitInput* input = task->get_input();
input->encrtyption = request->encrtyption();
input->device = request->device();
input->use_gpu = request->use_gpu();
WFConditional* cond = respool_init.get(task);
ctx->get_series()->push_back(cond);
}
// 在init_callback中需要释放资源
void init_callback(InitTask* task)
{
// ...处理逻辑...
respool_init.post(nullptr); // 释放资源
}
};
实现原理
- 创建容量为1的资源池,确保同一时间只有一个任务能获取到资源
- 将任务封装为WFConditional,只有获取到资源才会执行
- 任务完成后通过post()释放资源,允许下一个任务执行
定时器方案替代
如果不使用计算线程,也可以采用定时器方案:
void Init(InitRequest* request, InitResponse* response, srpc::RPCContext* ctx)
{
WFTimerTask* timer = WFTaskFactory::create_timer_task(0, init_callback);
WFConditional* cond = respool_init.get(timer);
ctx->get_series()->push_back(cond);
}
最佳实践
- 为每个需要串行执行的服务创建独立的资源池
- 资源池容量设为1保证严格串行
- 务必在回调函数中释放资源
- 合理设置超时时间避免死锁
- 考虑错误处理场景的资源释放
总结
通过WFResourcePool组件,我们可以优雅地实现SRPC服务的串行执行控制。这种方法不仅适用于模型推理场景,也可以广泛应用于需要保证执行顺序的各种业务场景。相比传统的锁机制,这种方案更加高效且不易出现死锁问题。
登录后查看全文
热门项目推荐
相关项目推荐
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
最新内容推荐
STM32到GD32项目移植完全指南:从兼容性到实战技巧 开源电子设计自动化利器:KiCad EDA全方位使用指南 Python案例资源下载 - 从入门到精通的完整项目代码合集 网页设计期末大作业资源包 - 一站式解决方案助力高效完成项目 ONVIF设备模拟器:开发测试必备的智能安防仿真工具 昆仑通态MCGS与台达VFD-M变频器通讯程序详解:工业自动化控制完美解决方案 STDF-View解析查看软件:半导体测试数据分析的终极工具指南 MQTT 3.1.1协议中文版文档:物联网开发者的必备技术指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案 TJSONObject完整解析教程:Delphi开发者必备的JSON处理指南
项目优选
收起
deepin linux kernel
C
24
9
Ascend Extension for PyTorch
Python
222
238
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
暂无简介
Dart
671
156
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
661
312
React Native鸿蒙化仓库
JavaScript
261
322
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
64
19
仓颉编译器源码及 cjdb 调试工具。
C++
134
867
仓颉编程语言测试用例。
Cangjie
37
859
openGauss kernel ~ openGauss is an open source relational database management system
C++
160
217