pgvectorscale项目中DISKANN索引创建问题分析与解决方案
问题背景
在pgvectorscale项目(PostgreSQL的向量搜索扩展)使用过程中,用户尝试在UNLOGGED表上创建DISKANN索引时遇到了"ambuildempty: not yet implemented"错误。该问题发生在索引创建约11小时后,导致索引最终被标记为无效状态。
环境配置
用户环境配置如下:
- 硬件:96核/192线程,512GB内存,4块3.5TB SSD
- 数据:约2100万行的UNLOGGED表,每行包含1024维向量(BERT类型嵌入)
- PostgreSQL 16.4运行在Ubuntu 24.04 LTS系统上
- pgvectorscale扩展版本为0.7.4
问题分析
错误信息"ambuildempty: not yet implemented"源自pgvectorscale源代码中的访问方法实现。该错误特别出现在处理UNLOGGED表的索引创建过程中,因为UNLOGGED表需要特殊的初始化处理。
深入分析发现,DISKANN索引目前对UNLOGGED表的支持存在限制。PostgreSQL对UNLOGGED索引有特殊要求:需要能够构建空索引并将其写入初始化分支(INIT_FORKNUM),以便在服务器重启时复制到主关系分支。pgvectorscale当前尚未实现这一功能。
解决方案验证
经过测试验证,以下两种方式可以成功创建DISKANN索引:
-
使用常规表替代UNLOGGED表:在普通表上创建索引可顺利完成,耗时约7-8小时。
-
移除CONCURRENTLY选项:非并发方式创建索引也能避免该问题。
索引使用注意事项
成功创建索引后,还需注意以下使用规范:
-
排序方向限制:DISKANN索引仅支持ASC排序。使用DESC排序时优化器将不会使用索引,转而选择顺序扫描。
-
大LIMIT值性能:当查询包含大LIMIT值(如100万至5000万)时,性能会显著下降。这是当前索引设计的已知限制。
未来改进方向
pgvectorscale项目团队已将该功能的完善纳入路线图,计划优先解决以下问题:
- 实现并行构建功能
- 添加距离截断查询支持
最佳实践建议
基于当前版本限制,建议用户:
- 避免在UNLOGGED表上使用DISKANN索引
- 确保查询使用ASC排序以利用索引
- 对于需要大结果集的查询,考虑分批处理或等待未来版本优化
该问题的根本解决需要等待pgvectorscale实现对UNLOGGED表的完整支持,包括ambuildempty方法的实现。项目团队已将该需求纳入开发计划,预计在后续版本中提供完整解决方案。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C042
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00