pgvectorscale项目中DISKANN索引创建问题分析与解决方案
问题背景
在pgvectorscale项目(PostgreSQL的向量搜索扩展)使用过程中,用户尝试在UNLOGGED表上创建DISKANN索引时遇到了"ambuildempty: not yet implemented"错误。该问题发生在索引创建约11小时后,导致索引最终被标记为无效状态。
环境配置
用户环境配置如下:
- 硬件:96核/192线程,512GB内存,4块3.5TB SSD
- 数据:约2100万行的UNLOGGED表,每行包含1024维向量(BERT类型嵌入)
- PostgreSQL 16.4运行在Ubuntu 24.04 LTS系统上
- pgvectorscale扩展版本为0.7.4
问题分析
错误信息"ambuildempty: not yet implemented"源自pgvectorscale源代码中的访问方法实现。该错误特别出现在处理UNLOGGED表的索引创建过程中,因为UNLOGGED表需要特殊的初始化处理。
深入分析发现,DISKANN索引目前对UNLOGGED表的支持存在限制。PostgreSQL对UNLOGGED索引有特殊要求:需要能够构建空索引并将其写入初始化分支(INIT_FORKNUM),以便在服务器重启时复制到主关系分支。pgvectorscale当前尚未实现这一功能。
解决方案验证
经过测试验证,以下两种方式可以成功创建DISKANN索引:
-
使用常规表替代UNLOGGED表:在普通表上创建索引可顺利完成,耗时约7-8小时。
-
移除CONCURRENTLY选项:非并发方式创建索引也能避免该问题。
索引使用注意事项
成功创建索引后,还需注意以下使用规范:
-
排序方向限制:DISKANN索引仅支持ASC排序。使用DESC排序时优化器将不会使用索引,转而选择顺序扫描。
-
大LIMIT值性能:当查询包含大LIMIT值(如100万至5000万)时,性能会显著下降。这是当前索引设计的已知限制。
未来改进方向
pgvectorscale项目团队已将该功能的完善纳入路线图,计划优先解决以下问题:
- 实现并行构建功能
- 添加距离截断查询支持
最佳实践建议
基于当前版本限制,建议用户:
- 避免在UNLOGGED表上使用DISKANN索引
- 确保查询使用ASC排序以利用索引
- 对于需要大结果集的查询,考虑分批处理或等待未来版本优化
该问题的根本解决需要等待pgvectorscale实现对UNLOGGED表的完整支持,包括ambuildempty方法的实现。项目团队已将该需求纳入开发计划,预计在后续版本中提供完整解决方案。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00