Loguru日志库中自动高亮特定文本的实现方法
Loguru作为Python生态中广受欢迎的日志记录库,其强大的功能和简洁的API设计深受开发者喜爱。本文将深入探讨如何在Loguru中实现自动高亮日志消息中特定格式文本的技术方案。
背景与需求分析
在实际开发中,我们经常需要在日志中突出显示某些关键信息,例如变量值、重要参数或特殊标记。Loguru原生支持通过<color>
标签来着色文本,但每次手动添加这些标签会显得繁琐且不优雅。
理想情况下,我们希望系统能够自动识别并高亮日志消息中的特定模式文本,比如用尖括号包裹的内容<example>
,而无需每次显式调用opt(colors=True)
方法。
技术实现方案
原生Loguru的着色机制
Loguru的着色处理发生在消息格式化之前,这意味着我们无法直接在标准格式化函数中修改原始消息的着色行为。这是Loguru内部设计的一个限制,但我们可以通过其他方式实现类似效果。
自定义格式化函数方案
通过自定义Loguru的格式化函数,我们可以实现自动高亮功能。以下是实现的核心代码:
from loguru import logger
import re
import sys
def highlight_formatter(record):
# 转义大括号避免二次格式化
message = record["message"].replace("{", "{{").replace("}", "}}")
# 使用正则表达式匹配并着色尖括号内容
colored_message = re.sub(r"<(.*?)>", r"<red>\1</red>", message)
return "[<level>{level}</level>] " + colored_message + "\n{exception}"
# 配置logger使用自定义格式化器
logger.remove()
logger.add(sys.stderr, format=highlight_formatter)
# 使用示例
logger.info("系统检测到<非法输入>,参数值为<42>")
实现要点解析
-
消息转义处理:为了避免与Loguru的格式化语法冲突,我们需要先对消息中的大括号进行转义处理。
-
正则表达式选择:使用非贪婪匹配模式
r"<(.*?)>"
可以正确处理消息中多个需要高亮的部分。 -
颜色标签注入:在匹配到的文本周围添加Loguru的颜色标签
<red>
和</red>
,实现着色效果。 -
格式化字符串构造:最终返回的字符串需要包含日志级别等标准信息,并保留异常输出的可能性。
注意事项
-
性能考量:正则表达式处理会增加少量开销,在极高频率日志场景下需评估性能影响。
-
标签冲突:如果日志消息本身包含Loguru的颜色标签,可能会产生意外结果。
-
功能限制:使用此方法后,
opt(colors=True)
将不再影响该sink的着色行为。 -
多sink场景:如需对不同输出采用不同高亮策略,需要为每个sink单独配置格式化器。
扩展应用
此技术方案不仅限于高亮尖括号内容,通过修改正则表达式模式,我们可以实现更复杂的文本高亮策略:
- 高亮特定格式的变量名
- 突出显示错误代码
- 标记敏感数据
- 区分不同类型的参数
总结
通过自定义Loguru的格式化函数,我们成功实现了日志消息中特定模式文本的自动高亮功能。这种方法既保持了Loguru原有的简洁API风格,又增加了实用的可视化增强功能,是Loguru高级用法的典型示例。开发者可以根据实际需求调整正则表达式和颜色标签,打造更适合自己项目的日志呈现方案。
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0135AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。03Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00Spark-Scilit-X1-13B
FLYTEK Spark Scilit-X1-13B is based on the latest generation of iFLYTEK Foundation Model, and has been trained on multiple core tasks derived from scientific literature. As a large language model tailored for academic research scenarios, it has shown excellent performance in Paper Assisted Reading, Academic Translation, English Polishing, and Review Generation, aiming to provide efficient and accurate intelligent assistance for researchers, faculty members, and students.Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
最新内容推荐
项目优选









