Apache ShenYu网关中的Netty直接内存溢出问题分析与解决方案
问题现象
在使用Apache ShenYu 2.4.1版本的生产环境中,当TPS低于20次/秒时,系统出现了io.netty.util.internal.OutOfDirectMemoryError错误。该问题首次出现在2024年7月30日,当时JVM内存配置为-Xmx2g -Xms2g -Xmn1g -Xss256k。在将JVM内存临时调整为-Xmx4g -Xms4g -Xmn1g -Xss256k后,问题暂时得到缓解,但在2024年11月21日再次出现。
错误分析
从错误日志可以看出,系统尝试分配16MB的直接内存时失败,此时已使用的直接内存约为3.8GB,接近最大限制4GB。错误堆栈显示问题发生在Netty的ByteBuf分配过程中,具体是在PoolArena尝试分配新的内存块时失败。
根本原因
这个问题与Netty的直接内存管理机制密切相关。Netty使用直接内存(Direct Memory)来提高I/O操作的性能,但直接内存不受JVM堆内存管理器的控制,需要特别关注其使用情况。常见的原因包括:
- 内存泄漏:ByteBuffer在使用后未被正确释放,导致直接内存持续增长
- 配置不当:直接内存大小配置不合理,无法满足实际需求
- 框架版本问题:底层依赖的Netty或相关框架版本存在已知的内存管理缺陷
解决方案
1. 升级依赖版本
根据社区反馈,这个问题可能与reactor-netty组件相关。建议升级Spring Boot版本,因为新版本通常会包含修复后的reactor-netty组件。
2. 调整JVM参数
虽然已经尝试增加JVM堆内存,但直接内存的配置需要单独设置。可以添加以下JVM参数:
-XX:MaxDirectMemorySize=2g
这个参数可以限制直接内存的最大使用量,防止无限制增长。
3. 监控直接内存使用
建议添加直接内存使用情况的监控,可以通过以下方式实现:
- 使用JMX监控
java.nio.BufferPool的MXBean - 添加Netty自带的资源泄漏检测工具
4. 代码层面优化
检查自定义插件实现,确保所有ByteBuf资源都正确释放。典型的资源释放模式应该是:
try {
ByteBuf buf = ...;
// 使用buf
} finally {
if (buf != null) {
buf.release();
}
}
预防措施
- 定期升级:保持Apache ShenYu和相关依赖库的最新版本
- 压力测试:在生产部署前进行充分的压力测试,特别是内存方面的测试
- 监控告警:建立完善的监控系统,对直接内存使用情况进行实时监控和告警
- 代码审查:对自定义插件的内存使用进行严格审查
总结
Apache ShenYu网关中的直接内存溢出问题通常与底层网络库的内存管理有关。通过升级依赖版本、合理配置内存参数、加强监控和优化代码,可以有效解决和预防此类问题。对于生产环境,建议采取综合措施,既解决当前问题,又建立长期预防机制。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00