Apache ShenYu网关中的Netty直接内存溢出问题分析与解决方案
问题现象
在使用Apache ShenYu 2.4.1版本的生产环境中,当TPS低于20次/秒时,系统出现了io.netty.util.internal.OutOfDirectMemoryError错误。该问题首次出现在2024年7月30日,当时JVM内存配置为-Xmx2g -Xms2g -Xmn1g -Xss256k。在将JVM内存临时调整为-Xmx4g -Xms4g -Xmn1g -Xss256k后,问题暂时得到缓解,但在2024年11月21日再次出现。
错误分析
从错误日志可以看出,系统尝试分配16MB的直接内存时失败,此时已使用的直接内存约为3.8GB,接近最大限制4GB。错误堆栈显示问题发生在Netty的ByteBuf分配过程中,具体是在PoolArena尝试分配新的内存块时失败。
根本原因
这个问题与Netty的直接内存管理机制密切相关。Netty使用直接内存(Direct Memory)来提高I/O操作的性能,但直接内存不受JVM堆内存管理器的控制,需要特别关注其使用情况。常见的原因包括:
- 内存泄漏:ByteBuffer在使用后未被正确释放,导致直接内存持续增长
- 配置不当:直接内存大小配置不合理,无法满足实际需求
- 框架版本问题:底层依赖的Netty或相关框架版本存在已知的内存管理缺陷
解决方案
1. 升级依赖版本
根据社区反馈,这个问题可能与reactor-netty组件相关。建议升级Spring Boot版本,因为新版本通常会包含修复后的reactor-netty组件。
2. 调整JVM参数
虽然已经尝试增加JVM堆内存,但直接内存的配置需要单独设置。可以添加以下JVM参数:
-XX:MaxDirectMemorySize=2g
这个参数可以限制直接内存的最大使用量,防止无限制增长。
3. 监控直接内存使用
建议添加直接内存使用情况的监控,可以通过以下方式实现:
- 使用JMX监控
java.nio.BufferPool的MXBean - 添加Netty自带的资源泄漏检测工具
4. 代码层面优化
检查自定义插件实现,确保所有ByteBuf资源都正确释放。典型的资源释放模式应该是:
try {
ByteBuf buf = ...;
// 使用buf
} finally {
if (buf != null) {
buf.release();
}
}
预防措施
- 定期升级:保持Apache ShenYu和相关依赖库的最新版本
- 压力测试:在生产部署前进行充分的压力测试,特别是内存方面的测试
- 监控告警:建立完善的监控系统,对直接内存使用情况进行实时监控和告警
- 代码审查:对自定义插件的内存使用进行严格审查
总结
Apache ShenYu网关中的直接内存溢出问题通常与底层网络库的内存管理有关。通过升级依赖版本、合理配置内存参数、加强监控和优化代码,可以有效解决和预防此类问题。对于生产环境,建议采取综合措施,既解决当前问题,又建立长期预防机制。
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00