在pandas-ai项目中为LocalLLM添加对话记忆功能
2025-05-11 09:31:15作者:魏献源Searcher
在数据分析领域,pandas-ai项目通过集成大型语言模型(LLM)的能力,为数据处理和分析提供了更智能的交互方式。其中,LocalLLM模块允许开发者使用本地部署的语言模型,而为其添加对话记忆功能可以显著提升用户体验和分析效率。
对话记忆的重要性
在数据分析场景中,用户通常会进行一系列相关的查询操作。例如,先查询某个品牌设备的数量,然后基于结果进一步询问其他品牌的对比情况。如果没有记忆功能,每次查询都是孤立的,模型无法利用之前的对话上下文来提供更连贯、更智能的响应。
实现原理
pandas-ai项目通过Memory类来实现对话记忆功能。Memory类本质上是一个对话历史记录器,它会存储用户和模型之间的交互信息。当新的查询到来时,这些历史记录会被转换为适合语言模型处理的格式,并作为上下文提供给模型。
具体实现方法
要为LocalLLM添加记忆功能,需要以下几个步骤:
- 导入必要的Memory类
- 创建Memory实例
- 添加历史对话记录
- 将Memory实例赋给LocalLLM
以下是典型的使用示例:
from pandasai import SmartDataframe
from pandasai.llm.local_llm import LocalLLM
from pandasai.helpers.memory import Memory
# 初始化本地LLM
llm = LocalLLM(api_base="http://localhost:8000/v1/", model='custom-qwen')
# 创建记忆实例
memory = Memory()
# 添加历史对话
memory.add("品牌为华为的设备有多少个", True) # 用户消息
memory.add("华为设备共25台", False) # 模型回复
# 关联记忆到LLM
llm.memory = memory
# 创建智能数据框
df = SmartDataframe("资产列表.xlsx", config={
"llm": llm,
"save_charts": True,
"save_charts_path": "/path/to/save"
})
# 进行有上下文的查询
response = df.chat("那华三的呢?", output_type="number")
print(response)
技术细节解析
Memory类的实现基于以下几个关键技术点:
- 消息存储结构:采用类似OpenAI API的消息格式,区分用户消息和助手消息
- 上下文管理:自动维护对话轮次,防止上下文过长导致模型性能下降
- 格式转换:提供to_openai_messages()方法,将存储的对话转换为模型可接受的输入格式
在实际应用中,记忆功能使得数据分析对话更加自然流畅。例如,当用户询问"对比华为和华三的设备数量"时,模型可以直接引用之前查询的结果,而不需要用户重复提供所有细节。
最佳实践建议
- 记忆长度控制:对于长时间对话,建议定期清理旧消息,避免上下文过长
- 关键信息提取:可以结合摘要功能,将复杂查询结果简化为关键数据点存入记忆
- 多轮对话设计:在设计对话流程时,考虑如何利用记忆功能实现更复杂的分析场景
总结
为pandas-ai的LocalLLM添加记忆功能,不仅提升了用户体验,也为实现更复杂的数据分析对话系统奠定了基础。通过合理利用对话历史,数据分析师可以像与人类专家交流一样,进行多轮、有上下文的智能数据分析。这一功能的实现展示了如何将大型语言模型的记忆能力与专业数据分析工具相结合,创造出更强大的智能分析助手。
登录后查看全文
热门项目推荐
相关项目推荐
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00
项目优选
收起
deepin linux kernel
C
24
7
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
376
3.26 K
暂无简介
Dart
619
140
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
62
19
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
479
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
647
261
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.09 K
619
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
790
76