在pandas-ai项目中为LocalLLM添加对话记忆功能
2025-05-11 16:02:57作者:魏献源Searcher
在数据分析领域,pandas-ai项目通过集成大型语言模型(LLM)的能力,为数据处理和分析提供了更智能的交互方式。其中,LocalLLM模块允许开发者使用本地部署的语言模型,而为其添加对话记忆功能可以显著提升用户体验和分析效率。
对话记忆的重要性
在数据分析场景中,用户通常会进行一系列相关的查询操作。例如,先查询某个品牌设备的数量,然后基于结果进一步询问其他品牌的对比情况。如果没有记忆功能,每次查询都是孤立的,模型无法利用之前的对话上下文来提供更连贯、更智能的响应。
实现原理
pandas-ai项目通过Memory类来实现对话记忆功能。Memory类本质上是一个对话历史记录器,它会存储用户和模型之间的交互信息。当新的查询到来时,这些历史记录会被转换为适合语言模型处理的格式,并作为上下文提供给模型。
具体实现方法
要为LocalLLM添加记忆功能,需要以下几个步骤:
- 导入必要的Memory类
- 创建Memory实例
- 添加历史对话记录
- 将Memory实例赋给LocalLLM
以下是典型的使用示例:
from pandasai import SmartDataframe
from pandasai.llm.local_llm import LocalLLM
from pandasai.helpers.memory import Memory
# 初始化本地LLM
llm = LocalLLM(api_base="http://localhost:8000/v1/", model='custom-qwen')
# 创建记忆实例
memory = Memory()
# 添加历史对话
memory.add("品牌为华为的设备有多少个", True) # 用户消息
memory.add("华为设备共25台", False) # 模型回复
# 关联记忆到LLM
llm.memory = memory
# 创建智能数据框
df = SmartDataframe("资产列表.xlsx", config={
"llm": llm,
"save_charts": True,
"save_charts_path": "/path/to/save"
})
# 进行有上下文的查询
response = df.chat("那华三的呢?", output_type="number")
print(response)
技术细节解析
Memory类的实现基于以下几个关键技术点:
- 消息存储结构:采用类似OpenAI API的消息格式,区分用户消息和助手消息
- 上下文管理:自动维护对话轮次,防止上下文过长导致模型性能下降
- 格式转换:提供to_openai_messages()方法,将存储的对话转换为模型可接受的输入格式
在实际应用中,记忆功能使得数据分析对话更加自然流畅。例如,当用户询问"对比华为和华三的设备数量"时,模型可以直接引用之前查询的结果,而不需要用户重复提供所有细节。
最佳实践建议
- 记忆长度控制:对于长时间对话,建议定期清理旧消息,避免上下文过长
- 关键信息提取:可以结合摘要功能,将复杂查询结果简化为关键数据点存入记忆
- 多轮对话设计:在设计对话流程时,考虑如何利用记忆功能实现更复杂的分析场景
总结
为pandas-ai的LocalLLM添加记忆功能,不仅提升了用户体验,也为实现更复杂的数据分析对话系统奠定了基础。通过合理利用对话历史,数据分析师可以像与人类专家交流一样,进行多轮、有上下文的智能数据分析。这一功能的实现展示了如何将大型语言模型的记忆能力与专业数据分析工具相结合,创造出更强大的智能分析助手。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
861
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
596
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K