在pandas-ai项目中为LocalLLM添加对话记忆功能
2025-05-11 09:31:15作者:魏献源Searcher
在数据分析领域,pandas-ai项目通过集成大型语言模型(LLM)的能力,为数据处理和分析提供了更智能的交互方式。其中,LocalLLM模块允许开发者使用本地部署的语言模型,而为其添加对话记忆功能可以显著提升用户体验和分析效率。
对话记忆的重要性
在数据分析场景中,用户通常会进行一系列相关的查询操作。例如,先查询某个品牌设备的数量,然后基于结果进一步询问其他品牌的对比情况。如果没有记忆功能,每次查询都是孤立的,模型无法利用之前的对话上下文来提供更连贯、更智能的响应。
实现原理
pandas-ai项目通过Memory类来实现对话记忆功能。Memory类本质上是一个对话历史记录器,它会存储用户和模型之间的交互信息。当新的查询到来时,这些历史记录会被转换为适合语言模型处理的格式,并作为上下文提供给模型。
具体实现方法
要为LocalLLM添加记忆功能,需要以下几个步骤:
- 导入必要的Memory类
- 创建Memory实例
- 添加历史对话记录
- 将Memory实例赋给LocalLLM
以下是典型的使用示例:
from pandasai import SmartDataframe
from pandasai.llm.local_llm import LocalLLM
from pandasai.helpers.memory import Memory
# 初始化本地LLM
llm = LocalLLM(api_base="http://localhost:8000/v1/", model='custom-qwen')
# 创建记忆实例
memory = Memory()
# 添加历史对话
memory.add("品牌为华为的设备有多少个", True) # 用户消息
memory.add("华为设备共25台", False) # 模型回复
# 关联记忆到LLM
llm.memory = memory
# 创建智能数据框
df = SmartDataframe("资产列表.xlsx", config={
"llm": llm,
"save_charts": True,
"save_charts_path": "/path/to/save"
})
# 进行有上下文的查询
response = df.chat("那华三的呢?", output_type="number")
print(response)
技术细节解析
Memory类的实现基于以下几个关键技术点:
- 消息存储结构:采用类似OpenAI API的消息格式,区分用户消息和助手消息
- 上下文管理:自动维护对话轮次,防止上下文过长导致模型性能下降
- 格式转换:提供to_openai_messages()方法,将存储的对话转换为模型可接受的输入格式
在实际应用中,记忆功能使得数据分析对话更加自然流畅。例如,当用户询问"对比华为和华三的设备数量"时,模型可以直接引用之前查询的结果,而不需要用户重复提供所有细节。
最佳实践建议
- 记忆长度控制:对于长时间对话,建议定期清理旧消息,避免上下文过长
- 关键信息提取:可以结合摘要功能,将复杂查询结果简化为关键数据点存入记忆
- 多轮对话设计:在设计对话流程时,考虑如何利用记忆功能实现更复杂的分析场景
总结
为pandas-ai的LocalLLM添加记忆功能,不仅提升了用户体验,也为实现更复杂的数据分析对话系统奠定了基础。通过合理利用对话历史,数据分析师可以像与人类专家交流一样,进行多轮、有上下文的智能数据分析。这一功能的实现展示了如何将大型语言模型的记忆能力与专业数据分析工具相结合,创造出更强大的智能分析助手。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
【typora序列号】 Typora插件实现Wavedrom时序图渲染的技术解析 MicroPython远程控制工具mpremote详解告别逐个调速!downkyi视频变速批量处理全攻略 RuoYi-Vue-Plus SQL监控:P6Spy性能分析工具3个技巧让Teable公式效率翻倍:从跨表引用到复杂计算全掌握 unibest环境配置指南:从零到一搭建 ComfyUI-VideoHelperSuite 工作流加载错误分析与解决方案 LibreSprite开源像素画工具编译安装完全指南5分钟上手革命性开发体验:laf WebIDE让云函数开发像写博客一样简单告别小屏烦恼:猫抓cat-catch移动端适配全攻略
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
525
3.72 K
Ascend Extension for PyTorch
Python
329
391
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
877
578
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
162
暂无简介
Dart
764
189
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
746
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
67
20
React Native鸿蒙化仓库
JavaScript
302
350