Pelee:移动设备上的实时目标检测系统
2024-09-15 06:16:39作者:范垣楠Rhoda
项目介绍
Pelee 是一个专为移动设备设计的实时目标检测系统,由 Robert J. Wang、Xiang Li 和 Charles X. Ling 在 NeurIPS 2018 上提出。该项目基于 SSD 框架,旨在提供一个高效、轻量级的目标检测解决方案,能够在资源受限的移动设备上实现实时检测。
项目技术分析
Pelee 的核心技术在于其轻量级的网络结构和高效的计算方法。通过优化网络架构和参数,Pelee 在保持高精度的同时,显著降低了计算复杂度和模型大小。具体来说,Pelee 采用了以下技术:
- 轻量级网络设计:Pelee 使用了一种名为 PeleeNet 的轻量级网络结构,该结构在保持高精度的同时,大幅减少了模型的参数量和计算量。
- 多尺度特征融合:Pelee 通过多尺度特征融合技术,能够在不同尺度上捕捉目标的特征,从而提高检测的准确性。
- 实时性能优化:Pelee 在多个平台上进行了性能优化,包括 Intel i7、NVIDIA TX2 和 iPhone 8,确保在不同设备上都能实现实时检测。
项目及技术应用场景
Pelee 的应用场景非常广泛,尤其适用于需要在移动设备上进行实时目标检测的场景。以下是一些典型的应用场景:
- 智能安防:在移动监控摄像头中,Pelee 可以实时检测并识别出异常行为或目标,提高安防系统的响应速度。
- 自动驾驶:在自动驾驶系统中,Pelee 可以实时检测道路上的行人、车辆和其他障碍物,确保驾驶安全。
- 增强现实(AR):在 AR 应用中,Pelee 可以实时检测并识别现实世界中的物体,为 AR 体验提供更丰富的交互。
- 移动端图像识别:在移动应用中,Pelee 可以用于实时识别图像中的物体,如商品识别、场景识别等。
项目特点
Pelee 项目具有以下显著特点:
- 高效性:Pelee 在保持高精度的同时,显著降低了计算复杂度和模型大小,能够在移动设备上实现实时检测。
- 轻量级:Pelee 的模型大小仅为 5.4M,远小于其他目标检测模型,适合在资源受限的移动设备上部署。
- 多平台支持:Pelee 在 Intel i7、NVIDIA TX2 和 iPhone 8 等多个平台上进行了优化,确保在不同设备上都能实现高效检测。
- 易于集成:Pelee 基于 SSD 框架,易于集成到现有的深度学习工作流中,开发者可以快速上手并进行二次开发。
总结
Pelee 是一个专为移动设备设计的实时目标检测系统,具有高效、轻量级、多平台支持等特点。无论是在智能安防、自动驾驶还是增强现实等领域,Pelee 都能提供出色的实时检测性能。如果你正在寻找一个能够在移动设备上高效运行的目标检测解决方案,Pelee 绝对值得一试!
参考文献
- Wang, Robert J., Li, Xiang, and Ling, Charles X. "Pelee: A Real-Time Object Detection System on Mobile Devices." Advances in Neural Information Processing Systems 31 (2018): 1967-1976.
项目地址
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~042CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava03GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0295- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
1 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析2 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析3 freeCodeCamp英语课程填空题提示缺失问题分析4 freeCodeCamp音乐播放器项目中的函数调用问题解析5 freeCodeCamp论坛排行榜项目中的错误日志规范要求6 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp Cafe Menu项目中link元素的void特性解析9 freeCodeCamp全栈开发课程中React实验项目的分类修正10 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析
最新内容推荐
项目优选
收起

React Native鸿蒙化仓库
C++
176
260

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
854
505

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
254
295

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
331
1.08 K

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
397
370

一款跨平台的 Markdown AI 笔记软件,致力于使用 AI 建立记录和写作的桥梁。
TSX
83
4

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

deepin linux kernel
C
21
5