Pelee:移动设备上的实时目标检测系统
2024-09-15 00:13:04作者:范垣楠Rhoda
项目介绍
Pelee 是一个专为移动设备设计的实时目标检测系统,由 Robert J. Wang、Xiang Li 和 Charles X. Ling 在 NeurIPS 2018 上提出。该项目基于 SSD 框架,旨在提供一个高效、轻量级的目标检测解决方案,能够在资源受限的移动设备上实现实时检测。
项目技术分析
Pelee 的核心技术在于其轻量级的网络结构和高效的计算方法。通过优化网络架构和参数,Pelee 在保持高精度的同时,显著降低了计算复杂度和模型大小。具体来说,Pelee 采用了以下技术:
- 轻量级网络设计:Pelee 使用了一种名为 PeleeNet 的轻量级网络结构,该结构在保持高精度的同时,大幅减少了模型的参数量和计算量。
- 多尺度特征融合:Pelee 通过多尺度特征融合技术,能够在不同尺度上捕捉目标的特征,从而提高检测的准确性。
- 实时性能优化:Pelee 在多个平台上进行了性能优化,包括 Intel i7、NVIDIA TX2 和 iPhone 8,确保在不同设备上都能实现实时检测。
项目及技术应用场景
Pelee 的应用场景非常广泛,尤其适用于需要在移动设备上进行实时目标检测的场景。以下是一些典型的应用场景:
- 智能安防:在移动监控摄像头中,Pelee 可以实时检测并识别出异常行为或目标,提高安防系统的响应速度。
- 自动驾驶:在自动驾驶系统中,Pelee 可以实时检测道路上的行人、车辆和其他障碍物,确保驾驶安全。
- 增强现实(AR):在 AR 应用中,Pelee 可以实时检测并识别现实世界中的物体,为 AR 体验提供更丰富的交互。
- 移动端图像识别:在移动应用中,Pelee 可以用于实时识别图像中的物体,如商品识别、场景识别等。
项目特点
Pelee 项目具有以下显著特点:
- 高效性:Pelee 在保持高精度的同时,显著降低了计算复杂度和模型大小,能够在移动设备上实现实时检测。
- 轻量级:Pelee 的模型大小仅为 5.4M,远小于其他目标检测模型,适合在资源受限的移动设备上部署。
- 多平台支持:Pelee 在 Intel i7、NVIDIA TX2 和 iPhone 8 等多个平台上进行了优化,确保在不同设备上都能实现高效检测。
- 易于集成:Pelee 基于 SSD 框架,易于集成到现有的深度学习工作流中,开发者可以快速上手并进行二次开发。
总结
Pelee 是一个专为移动设备设计的实时目标检测系统,具有高效、轻量级、多平台支持等特点。无论是在智能安防、自动驾驶还是增强现实等领域,Pelee 都能提供出色的实时检测性能。如果你正在寻找一个能够在移动设备上高效运行的目标检测解决方案,Pelee 绝对值得一试!
参考文献
- Wang, Robert J., Li, Xiang, and Ling, Charles X. "Pelee: A Real-Time Object Detection System on Mobile Devices." Advances in Neural Information Processing Systems 31 (2018): 1967-1976.
项目地址
热门项目推荐
鸿蒙开发工具大赶集
本仓将收集和展示鸿蒙开发工具,欢迎大家踊跃投稿。通过pr附上您的工具介绍和使用指南,并加上工具对应的链接,通过的工具将会成功上架到我们社区。012hertz
Go 微服务 HTTP 框架,具有高易用性、高性能、高扩展性等特点。Go01每日精选项目
🔥🔥 每日精选已经升级为:【行业动态】,快去首页看看吧,后续都在【首页 - 行业动态】内更新,多条更新哦~🔥🔥 每日推荐行业内最新、增长最快的项目,快速了解行业最新热门项目动态~~029kitex
Go 微服务 RPC 框架,具有高性能、强可扩展的特点。Go00Cangjie-Examples
本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。Cangjie058毕方Talon工具
本工具是一个端到端的工具,用于项目的生成IR并自动进行缺陷检测。Python040PDFMathTranslate
PDF scientific paper translation with preserved formats - 基于 AI 完整保留排版的 PDF 文档全文双语翻译,支持 Google/DeepL/Ollama/OpenAI 等服务,提供 CLI/GUI/DockerPython06mybatis-plus
mybatis 增强工具包,简化 CRUD 操作。 文档 http://baomidou.com 低代码组件库 http://aizuda.comJava03国产编程语言蓝皮书
《国产编程语言蓝皮书》-编委会工作区018- DDeepSeek-R1探索新一代推理模型,DeepSeek-R1系列以大规模强化学习为基础,实现自主推理,表现卓越,推理行为强大且独特。开源共享,助力研究社区深入探索LLM推理能力,推动行业发展。【此简介由AI生成】。Python00
热门内容推荐
最新内容推荐
项目优选
收起

前端智能化场景解决方案UI库,轻松构建你的AI应用,我们将持续完善更新,欢迎你的使用与建议。
官网地址:https://matechat.gitcode.com
383
36

Python - 100天从新手到大师
Python
611
115

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
205
58
Ffit-framework
FIT: 企业级AI开发框架,提供多语言函数引擎(FIT)、流式编排引擎(WaterFlow)及Java生态的LangChain替代方案(FEL)。原生/Spring双模运行,支持插件热插拔与智能聚散部署,无缝统一大模型与业务系统。
Java
113
13

🎉 基于Spring Boot、Spring Cloud & Alibaba、Vue3 & Vite、Element Plus的分布式前后端分离微服务架构权限管理系统
Vue
45
29

a fast,lightweight and joy web framework
Cangjie
11
2

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
286
79

Go 微服务 HTTP 框架,具有高易用性、高性能、高扩展性等特点。
Go
7
1

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
60
48

open-eBackup是一款开源备份软件,采用集群高扩展架构,通过应用备份通用框架、并行备份等技术,为主流数据库、虚拟化、文件系统、大数据等应用提供E2E的数据备份、恢复等能力,帮助用户实现关键数据高效保护。
HTML
90
65