YOLOv5在树莓派4上的自定义模型部署指南
2025-04-30 23:49:08作者:余洋婵Anita
项目背景
YOLOv5作为当前流行的目标检测框架,其轻量级特性使其非常适合在边缘设备如树莓派4上运行。本文将详细介绍如何将训练好的YOLOv5自定义模型部署到树莓派4设备上,并解决实际部署过程中可能遇到的关键问题。
环境准备
在树莓派4上部署YOLOv5模型前,需要完成以下准备工作:
- 系统要求:建议使用Raspberry Pi OS 64位版本以获得更好的性能支持
- Python环境:安装Python 3.8或更高版本
- 依赖库安装:通过pip安装PyTorch的ARM兼容版本及其他必要依赖
模型部署流程
1. 获取YOLOv5代码
推荐在树莓派上直接克隆官方YOLOv5仓库:
git clone https://github.com/ultralytics/yolov5
cd yolov5
pip install -r requirements.txt
这种方法可以确保获得最新的代码和兼容性修复。
2. 模型文件准备
将训练好的模型文件(best.pt)及相关配置文件从训练环境传输到树莓派:
- 模型权重文件:best.pt
- 数据集配置文件:data.yaml
- 模型结构文件:custom_yolov5s.yaml(如使用自定义结构)
建议将这些文件放置在yolov5项目目录下的适当位置,保持与训练时相同的相对路径结构。
3. 模型加载方式
在树莓派上加载自定义模型有两种主要方式:
方法一:从官方源加载
model = torch.hub.load("ultralytics/yolov5", "custom", path="path/to/best.pt")
方法二:从本地源加载
model = torch.hub.load("path/to/yolov5", "custom", path="path/to/best.pt", source="local")
选择建议:
- 若未修改YOLOv5源代码,使用方法一更简洁
- 若对YOLOv5代码进行了自定义修改,必须使用方法二
4. 配置文件处理
YOLOv5不会自动加载data.yaml和模型结构文件,需要在推理时显式指定:
model = torch.hub.load(...)
model.yaml = 'path/to/data.yaml' # 设置数据集配置
或者在使用detect.py脚本时通过命令行参数指定:
python detect.py --weights best.pt --data data.yaml
性能优化建议
- 模型量化:将模型转换为INT8格式可显著提升推理速度
- OpenCV优化:安装带NEON优化的OpenCV版本
- 电源管理:确保树莓派有足够供电,建议使用3A以上电源
- 散热处理:长时间运行时建议加装散热片或风扇
常见问题解决
- 内存不足:可尝试减小推理时的imgsz参数
- 依赖冲突:建议使用虚拟环境隔离项目依赖
- 推理速度慢:考虑使用更小的模型变体(如YOLOv5n)
- 模型加载失败:检查PyTorch版本与模型训练时的一致性
实际应用示例
以下是一个完整的树莓派推理代码示例:
import torch
import cv2
# 初始化模型
model = torch.hub.load('ultralytics/yolov5', 'custom', path='best.pt')
model.yaml = 'data.yaml'
# 捕获摄像头图像
cap = cv2.VideoCapture(0)
while True:
ret, frame = cap.read()
if not ret:
break
# 执行推理
results = model(frame)
# 显示结果
cv2.imshow('Detection', results.render()[0])
if cv2.waitKey(1) == ord('q'):
break
cap.release()
cv2.destroyAllWindows()
总结
在树莓派4上部署YOLOv5自定义模型是一个系统工程,需要关注从环境配置到性能优化的各个环节。通过本文介绍的方法,开发者可以有效地将训练好的YOLOv5模型部署到树莓派设备上,实现边缘计算场景下的实时目标检测应用。随着YOLOv5的持续更新和树莓派硬件的迭代,这一技术组合在物联网和嵌入式视觉领域将展现出更大的应用潜力。
登录后查看全文
热门项目推荐
相关项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0113
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
487
3.61 K
Ascend Extension for PyTorch
Python
298
332
暂无简介
Dart
738
177
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
270
113
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
865
467
仓颉编译器源码及 cjdb 调试工具。
C++
149
880
React Native鸿蒙化仓库
JavaScript
296
343
Dora SSR 是一款跨平台的游戏引擎,提供前沿或是具有探索性的游戏开发功能。它内置了Web IDE,提供了可以轻轻松松通过浏览器访问的快捷游戏开发环境,特别适合于在新兴市场如国产游戏掌机和其它移动电子设备上直接进行游戏开发和编程学习。
C++
52
7
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
20