YOLOv5在树莓派4上的自定义模型部署指南
2025-04-30 15:06:28作者:余洋婵Anita
项目背景
YOLOv5作为当前流行的目标检测框架,其轻量级特性使其非常适合在边缘设备如树莓派4上运行。本文将详细介绍如何将训练好的YOLOv5自定义模型部署到树莓派4设备上,并解决实际部署过程中可能遇到的关键问题。
环境准备
在树莓派4上部署YOLOv5模型前,需要完成以下准备工作:
- 系统要求:建议使用Raspberry Pi OS 64位版本以获得更好的性能支持
 - Python环境:安装Python 3.8或更高版本
 - 依赖库安装:通过pip安装PyTorch的ARM兼容版本及其他必要依赖
 
模型部署流程
1. 获取YOLOv5代码
推荐在树莓派上直接克隆官方YOLOv5仓库:
git clone https://github.com/ultralytics/yolov5
cd yolov5
pip install -r requirements.txt
这种方法可以确保获得最新的代码和兼容性修复。
2. 模型文件准备
将训练好的模型文件(best.pt)及相关配置文件从训练环境传输到树莓派:
- 模型权重文件:best.pt
 - 数据集配置文件:data.yaml
 - 模型结构文件:custom_yolov5s.yaml(如使用自定义结构)
 
建议将这些文件放置在yolov5项目目录下的适当位置,保持与训练时相同的相对路径结构。
3. 模型加载方式
在树莓派上加载自定义模型有两种主要方式:
方法一:从官方源加载
model = torch.hub.load("ultralytics/yolov5", "custom", path="path/to/best.pt")
方法二:从本地源加载
model = torch.hub.load("path/to/yolov5", "custom", path="path/to/best.pt", source="local")
选择建议:
- 若未修改YOLOv5源代码,使用方法一更简洁
 - 若对YOLOv5代码进行了自定义修改,必须使用方法二
 
4. 配置文件处理
YOLOv5不会自动加载data.yaml和模型结构文件,需要在推理时显式指定:
model = torch.hub.load(...)
model.yaml = 'path/to/data.yaml'  # 设置数据集配置
或者在使用detect.py脚本时通过命令行参数指定:
python detect.py --weights best.pt --data data.yaml
性能优化建议
- 模型量化:将模型转换为INT8格式可显著提升推理速度
 - OpenCV优化:安装带NEON优化的OpenCV版本
 - 电源管理:确保树莓派有足够供电,建议使用3A以上电源
 - 散热处理:长时间运行时建议加装散热片或风扇
 
常见问题解决
- 内存不足:可尝试减小推理时的imgsz参数
 - 依赖冲突:建议使用虚拟环境隔离项目依赖
 - 推理速度慢:考虑使用更小的模型变体(如YOLOv5n)
 - 模型加载失败:检查PyTorch版本与模型训练时的一致性
 
实际应用示例
以下是一个完整的树莓派推理代码示例:
import torch
import cv2
# 初始化模型
model = torch.hub.load('ultralytics/yolov5', 'custom', path='best.pt')
model.yaml = 'data.yaml'
# 捕获摄像头图像
cap = cv2.VideoCapture(0)
while True:
    ret, frame = cap.read()
    if not ret:
        break
    
    # 执行推理
    results = model(frame)
    
    # 显示结果
    cv2.imshow('Detection', results.render()[0])
    
    if cv2.waitKey(1) == ord('q'):
        break
cap.release()
cv2.destroyAllWindows()
总结
在树莓派4上部署YOLOv5自定义模型是一个系统工程,需要关注从环境配置到性能优化的各个环节。通过本文介绍的方法,开发者可以有效地将训练好的YOLOv5模型部署到树莓派设备上,实现边缘计算场景下的实时目标检测应用。随着YOLOv5的持续更新和树莓派硬件的迭代,这一技术组合在物联网和嵌入式视觉领域将展现出更大的应用潜力。
登录后查看全文 
热门项目推荐
相关项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
 
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
 
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
 
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
222
302
Ascend Extension for PyTorch
Python
105
133
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
161
暂无简介
Dart
568
126
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
250
14
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
仓颉编译器源码及 cjdb 调试工具。
C++
118
103
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
446