Lua-Resty-Mlcache 使用教程
2024-08-19 19:11:59作者:段琳惟
项目介绍
Lua-Resty-Mlcache 是一个为 OpenResty 设计的分层缓存库。它结合了 lua_shared_dict API 和 lua-resty-lrucache 的强大功能,提供了一个极其高效和灵活的缓存解决方案。该库支持缓存和负缓存(negative caching),内置互斥锁(mutex)防止缓存击穿,以及跨工作进程的通信机制,以便在缓存失效时更新 L1 缓存。
项目快速启动
安装
首先,确保你已经安装了 LuaRocks。然后使用以下命令安装 Lua-Resty-Mlcache:
luarocks install lua-resty-mlcache
配置和使用
在你的 Nginx 配置文件中,添加以下配置:
http {
lua_shared_dict cache_dict 1m;
lua_code_cache on;
init_by_lua_block {
local mlcache = require "resty.mlcache"
local cache, err = mlcache.new("my_cache", "cache_dict", {
lru_size = 500, -- L1 缓存大小
ttl = 3600, -- 缓存有效期 1 小时
neg_ttl = 30 -- 负缓存有效期 30 秒
})
if not cache then
error("failed to create mlcache: " .. err)
end
_G.cache = cache -- 将缓存实例全局化,方便使用
}
server {
listen 8080;
location / {
content_by_lua_block {
local function callback(username)
return db:get_user(username) -- 从数据库获取用户信息
end
local value, err = cache:get("user_key", { callback = callback })
if err then
ngx.say("Error: ", err)
else
ngx.say("Value: ", value)
end
}
}
}
}
应用案例和最佳实践
应用案例
Lua-Resty-Mlcache 适用于需要高性能缓存解决方案的场景,例如:
- API 网关缓存:在 API 网关中缓存频繁访问的数据,减少后端服务的负载。
- 动态配置缓存:缓存动态配置数据,减少对配置管理服务的频繁访问。
最佳实践
- 合理设置 TTL:根据数据更新的频率合理设置缓存的有效期(TTL),避免缓存数据过时。
- 使用负缓存:对于不存在的数据,使用负缓存可以减少对后端服务的无效请求。
- 监控和调优:定期监控缓存的命中率和性能,根据实际情况调整缓存配置。
典型生态项目
Lua-Resty-Mlcache 可以与以下项目结合使用,以构建更强大的系统:
- OpenResty:作为核心服务器,提供高性能的 Web 服务和 API 网关。
- Lua-Resty-Redis:与 Redis 结合,实现分布式缓存和数据共享。
- Lua-Resty-MySQL:与 MySQL 结合,实现高效的数据访问和缓存。
通过这些项目的结合使用,可以构建出高性能、可扩展的 Web 应用和 API 服务。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
345
412
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
888
605
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
337
182
暂无简介
Dart
777
192
deepin linux kernel
C
27
11
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.34 K
758
React Native鸿蒙化仓库
JavaScript
303
356
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
987
252
仓颉编译器源码及 cjdb 调试工具。
C++
154
896