探索Web安全的利器:LORSRF 2.1
在网络安全的世界里,Web渗透测试是一项至关重要的任务,它能帮助我们识别并修复潜在的漏洞,以保障应用程序的安全性。LORSRF(Local Output Redirection Server-Side Request Forgery)是一款强大的工具,专为发现SSRF和Out-of-band资源加载攻击的可利用参数设计。现在,让我们深入了解这个开源项目,并揭示它的独特魅力。
项目介绍
LORSRF 2.1是一个高效的Web渗透测试工具,其核心功能在于识别可以被恶意利用的参数,以发起SSRF或OAST(Out-of-band Application Security Testing)攻击。与传统的检测方法不同,LORSRF通过添加OAST主机如Burp Collaborator到参数值中,无需目标的具体信息就能生成HTTP请求,从而在Burp Collaborator中捕获。
项目技术分析
LORSRF的一大特色是允许您将特定的目标信息作为变量插入到OAST主机中。这使得在扫描过程中,能够更精确地定位易受攻击的参数和端点。此外,该工具还支持使用特殊变量来包含额外信息,如目标端点、URL查询、当前请求方法等,增强了定制化的能力。
LORSRF提供三种不同的请求方式:默认GET方法、JSON请求和表单POST请求。您可以根据需求通过命令行选项选择合适的方式。
应用场景
无论您是在维护自家Web应用的安全,还是对外部应用进行安全性评估,LORSRF都能发挥巨大作用。它可以轻松检测出隐藏的SSRF漏洞,预防可能的攻击,确保您的服务免受侵害。
项目特点
- 智能参数识别:自动识别可被SSRF利用的参数。
- 动态变量支持:内置多个变量,如
%PARAM%,%PATH%,%HOST%,%QUERY%,%METHOD%,用于增强OAST主机的信息。 - 灵活的请求方式:支持GET、POST(包括JSON和表单形式)请求。
- 高效扫描:多线程扫描,提高测试效率。
- 易于安装和使用:基于Rust语言构建,提供清晰的命令行界面和示例。
安装与使用
安装LORSRF非常简单,首先安装最新的Rust环境,然后运行指定的命令安装即可。一旦安装完成,按照提供的示例命令,您可以快速启动对目标URL的扫描。
演示视频
想直观了解如何使用LORSRF?点击这里观看演示视频,看看它是如何工作的。
结语
总的来说,LORSRF 2.1是一个强大且实用的Web安全工具,它简化了SSRF漏洞的探测过程,并提供了丰富的自定义选项。如果你是Web安全爱好者或专业的渗透测试人员,那么LORSRF绝对值得你的关注和使用。立即加入社区,开始你的安全探索之旅吧!
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C0131
let_datasetLET数据集 基于全尺寸人形机器人 Kuavo 4 Pro 采集,涵盖多场景、多类型操作的真实世界多任务数据。面向机器人操作、移动与交互任务,支持真实环境下的可扩展机器人学习00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python059
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
AgentCPM-ReportAgentCPM-Report是由THUNLP、中国人民大学RUCBM和ModelBest联合开发的开源大语言模型智能体。它基于MiniCPM4.1 80亿参数基座模型构建,接收用户指令作为输入,可自主生成长篇报告。Python00