深度学习工作负载的异构感知集群调度策略
项目介绍
"Heterogeneity-Aware Cluster Scheduling Policies for Deep Learning Workloads" 是一个开源项目,旨在为深度学习工作负载提供高效的集群调度策略。该项目基于OSDI论文的实现,通过异构感知的调度机制,优化了多GPU集群上的资源分配,从而显著提升了深度学习任务的执行效率。
项目技术分析
调度器核心
项目核心在于scheduler目录下的调度器实现,包括调度机制和模拟器(scheduler.py)、性能感知策略的实现(policies/)、GavelIterator模块以及调度器与工作节点之间的通信栈(使用gRPC实现)。这些组件共同构成了一个高效、灵活的调度系统。
工作负载集成
workloads目录包含了目标工作负载的PyTorch实现,并进行了必要的修改以与GavelIterator集成。这确保了调度器能够无缝支持各种深度学习任务。
依赖与部署
项目使用Python 3.8开发,并推荐使用Miniconda进行Python环境的安装。软件依赖项可以通过简单的命令进行安装,并且项目已经在Amazon EC2的特定AMI上进行了测试,方便用户快速部署。
项目及技术应用场景
深度学习集群
该项目特别适用于需要高效管理多GPU集群资源的场景,如大规模深度学习训练、模型优化等。通过异构感知的调度策略,可以显著减少资源浪费,提升整体集群的利用率。
高性能计算
在高性能计算(HPC)领域,资源的高效调度是关键。该项目提供的调度策略能够有效应对异构计算资源的复杂性,适用于各种需要高性能计算支持的应用场景。
项目特点
异构感知
项目最大的特点是其异构感知能力,能够智能识别和适应不同类型的GPU资源,从而实现更精细的资源分配。
高性能调度
通过集成多种性能感知策略,项目能够在保证任务性能的同时,最大化集群的整体吞吐量。
灵活扩展
项目设计灵活,支持在模拟环境和物理集群上进行评估,用户可以根据实际需求选择合适的部署方式。
易于使用
项目提供了详细的安装和使用指南,用户可以通过简单的命令行操作快速上手,进行调度策略的评估和优化。
结语
"Heterogeneity-Aware Cluster Scheduling Policies for Deep Learning Workloads" 项目为深度学习和高性能计算领域提供了一个强大的工具,通过其异构感知和高效调度策略,能够显著提升资源利用率和任务执行效率。无论你是深度学习研究者还是高性能计算工程师,这个项目都值得你一试。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00