GeneFacePlusPlus训练过程中的Loss异常问题分析与解决
2025-07-09 01:21:53作者:柏廷章Berta
训练Loss异常上升现象分析
在使用GeneFacePlusPlus进行头部模型(head model)训练时,开发者可能会遇到一个特殊现象:在约50,000步时总损失(total_loss)降至0.05左右,但随后却持续上升至50以上。这种现象并非正常训练过程中的预期行为,而是由特定因素导致的异常情况。
问题根源探究
经过深入分析,发现该问题主要源于以下两个关键因素:
-
视频分辨率不符合要求
GeneFacePlusPlus对输入视频有严格的格式要求,必须使用512×512分辨率的正方形视频。当输入视频的长宽比例差异较大时(如竖屏拍摄的长方形视频),会导致模型训练过程中出现Loss异常上升的情况。 -
LPIPS损失项的引入时机
训练日志分析表明,Loss的二次上升与LPIPS(Learned Perceptual Image Patch Similarity)相关损失项的引入时间点高度吻合。这是模型训练策略的一部分,在特定迭代步数后会加入LPIPS损失来提升生成质量。
解决方案与最佳实践
针对上述问题,我们建议采取以下解决方案:
-
视频预处理规范
- 必须将输入视频裁剪为标准的512×512分辨率
- 裁剪时应确保人脸位于画面中心区域
- 建议使用专业视频编辑工具进行精确裁剪
-
训练参数优化建议
- 原始设置的250,000训练步数可以适当缩减
- 推荐设置为150,000步(max_update参数)
- 同步调整lpips_start_iters参数为140,000步
- 注意:不应单纯依赖Loss值作为停止训练的标准
-
训练数据规模建议
- 实验表明1分钟、3分钟和5分钟的视频素材均可获得良好效果
- 视频内容不需要严格限制为只有人头的画面
模型训练流程优化建议
对于GeneFacePlusPlus的两阶段训练流程(头部模型和躯干模型),开发者需要注意:
- 虽然代码会保存最佳模型(checkpoint),但在躯干模型训练阶段默认使用最终模型而非最佳模型
- 这种设计是经过验证的合理方案,开发者无需手动干预模型选择过程
- 若确有特殊需求,可以考虑修改代码增加可选参数来使用最佳模型
总结
GeneFacePlusPlus作为先进的数字人生成系统,对输入数据和训练过程有特定要求。通过遵循本文提出的视频预处理规范和训练参数建议,开发者可以有效避免训练过程中的Loss异常问题,获得稳定可靠的模型训练效果。理解LPIPS等高级损失函数的引入机制也有助于开发者更好地监控和优化训练过程。
登录后查看全文
热门项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++043Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0288Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
163
2.05 K

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
199
279

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
60
16

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
951
557

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
96
15

基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
0

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
77
71

喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
17
0