MaterialRecents 开源项目教程
1、项目介绍
MaterialRecents 是一个基于 Android 平台的开源项目,旨在提供一个易于使用的适配器容器,用于实现类似于 Android Lollipop 的最近应用列表功能。该项目使用 CardView,并且兼容从 Froyo(Android 2.2)到最新版本的 Android 系统。MaterialRecents 是从 Carbon 库中提取出来的一个独立项目,允许开发者在自己的应用中仅包含这一特定功能。
2、项目快速启动
2.1 导入项目
首先,你需要将 MaterialRecents 项目导入到你的 Android 项目中。你可以通过 JitPack 来实现这一点。在你的 build.gradle 文件中添加以下依赖:
repositories {
maven { url "https://jitpack.io" }
}
dependencies {
implementation 'com.github.ZieIony:MaterialRecents:master-SNAPSHOT'
}
2.2 使用 MaterialRecents
在你的布局文件中添加 RecentsList:
<com.zieiony.materialrecents.RecentsList
android:id="@+id/recents"
android:layout_width="match_parent"
android:layout_height="match_parent"/>
在你的 Activity 中设置适配器:
RecentsList recents = (RecentsList) findViewById(R.id.recents);
recents.setAdapter(new RecentsAdapter() {
@Override
public String getTitle(int position) {
return "Item " + position;
}
@Override
public View getView(int position) {
ImageView iv = new ImageView(RecentsActivity.this);
iv.setImageResource(R.drawable.mazda);
iv.setBackgroundColor(0xffffffff);
return iv;
}
@Override
public Drawable getIcon(int position) {
return getResources().getDrawable(R.mipmap.ic_launcher);
}
@Override
public int getHeaderColor(int position) {
return colors[random.nextInt(colors.length)];
}
@Override
public int getCount() {
return 10;
}
});
3、应用案例和最佳实践
3.1 个性化桌面
MaterialRecents 可以用于创建一个高度定制化的启动器,用户可以根据自己的喜好调整图标大小、字体样式、背景颜色等各项参数。这使得 MaterialRecents 成为个性化桌面的理想选择。
3.2 开发参考
对于 Android 开发者来说,MaterialRecents 是一个很好的学习资源。通过研究其源码,开发者可以了解如何在 Android 应用中实现高效的内存管理、Material Design 以及自定义手势。
3.3 教学与实验
对于 Android 开发初学者,MaterialRecents 是一个很好的实践项目。通过探索其代码,初学者可以深入了解 Android 系统的底层运作和 API 使用。
4、典型生态项目
4.1 Carbon 库
MaterialRecents 是从 Carbon 库中提取出来的一个独立项目。Carbon 库是一个功能丰富的 Android 库,提供了许多 Material Design 相关的组件和功能。如果你对 MaterialRecents 感兴趣,可以进一步探索 Carbon 库,了解更多相关功能。
4.2 JitPack
JitPack 是一个方便的工具,允许开发者轻松地将 GitHub 上的开源项目作为依赖项导入到自己的项目中。通过 JitPack,你可以快速集成 MaterialRecents 到你的 Android 项目中。
通过以上步骤,你可以快速上手并使用 MaterialRecents 项目,实现类似于 Android Lollipop 的最近应用列表功能。希望这篇教程对你有所帮助!
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
unified-cache-managementUnified Cache Manager(推理记忆数据管理器),是一款以KV Cache为中心的推理加速套件,其融合了多类型缓存加速算法工具,分级管理并持久化推理过程中产生的KV Cache记忆数据,扩大推理上下文窗口,以实现高吞吐、低时延的推理体验,降低每Token推理成本。Python03
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00