MaterialRecents 开源项目教程
1、项目介绍
MaterialRecents 是一个基于 Android 平台的开源项目,旨在提供一个易于使用的适配器容器,用于实现类似于 Android Lollipop 的最近应用列表功能。该项目使用 CardView,并且兼容从 Froyo(Android 2.2)到最新版本的 Android 系统。MaterialRecents 是从 Carbon 库中提取出来的一个独立项目,允许开发者在自己的应用中仅包含这一特定功能。
2、项目快速启动
2.1 导入项目
首先,你需要将 MaterialRecents 项目导入到你的 Android 项目中。你可以通过 JitPack 来实现这一点。在你的 build.gradle 文件中添加以下依赖:
repositories {
maven { url "https://jitpack.io" }
}
dependencies {
implementation 'com.github.ZieIony:MaterialRecents:master-SNAPSHOT'
}
2.2 使用 MaterialRecents
在你的布局文件中添加 RecentsList:
<com.zieiony.materialrecents.RecentsList
android:id="@+id/recents"
android:layout_width="match_parent"
android:layout_height="match_parent"/>
在你的 Activity 中设置适配器:
RecentsList recents = (RecentsList) findViewById(R.id.recents);
recents.setAdapter(new RecentsAdapter() {
@Override
public String getTitle(int position) {
return "Item " + position;
}
@Override
public View getView(int position) {
ImageView iv = new ImageView(RecentsActivity.this);
iv.setImageResource(R.drawable.mazda);
iv.setBackgroundColor(0xffffffff);
return iv;
}
@Override
public Drawable getIcon(int position) {
return getResources().getDrawable(R.mipmap.ic_launcher);
}
@Override
public int getHeaderColor(int position) {
return colors[random.nextInt(colors.length)];
}
@Override
public int getCount() {
return 10;
}
});
3、应用案例和最佳实践
3.1 个性化桌面
MaterialRecents 可以用于创建一个高度定制化的启动器,用户可以根据自己的喜好调整图标大小、字体样式、背景颜色等各项参数。这使得 MaterialRecents 成为个性化桌面的理想选择。
3.2 开发参考
对于 Android 开发者来说,MaterialRecents 是一个很好的学习资源。通过研究其源码,开发者可以了解如何在 Android 应用中实现高效的内存管理、Material Design 以及自定义手势。
3.3 教学与实验
对于 Android 开发初学者,MaterialRecents 是一个很好的实践项目。通过探索其代码,初学者可以深入了解 Android 系统的底层运作和 API 使用。
4、典型生态项目
4.1 Carbon 库
MaterialRecents 是从 Carbon 库中提取出来的一个独立项目。Carbon 库是一个功能丰富的 Android 库,提供了许多 Material Design 相关的组件和功能。如果你对 MaterialRecents 感兴趣,可以进一步探索 Carbon 库,了解更多相关功能。
4.2 JitPack
JitPack 是一个方便的工具,允许开发者轻松地将 GitHub 上的开源项目作为依赖项导入到自己的项目中。通过 JitPack,你可以快速集成 MaterialRecents 到你的 Android 项目中。
通过以上步骤,你可以快速上手并使用 MaterialRecents 项目,实现类似于 Android Lollipop 的最近应用列表功能。希望这篇教程对你有所帮助!
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5HunyuanVideo-1.5作为一款轻量级视频生成模型,仅需83亿参数即可提供顶级画质,大幅降低使用门槛。该模型在消费级显卡上运行流畅,让每位开发者和创作者都能轻松使用。本代码库提供生成创意视频所需的实现方案与工具集。00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00