Expected Parrot Domain-Specific Language (EDSL) 使用教程
2025-04-17 22:43:10作者:段琳惟
1. 项目介绍
Expected Parrot Domain-Specific Language (EDSL) 是一个专为计算社会科学和市场研究设计的领域特定语言。它使得设计、运行包含众多AI代理和大型语言模型(LLMs)的调查和实验变得简单。用户可以使用EDSL进行复杂的数据标注和其他研究任务,并且生成的结果格式化为指定的数据集,可以免费复制,并带有内置的分析、可视化和协作方法。
2. 项目快速启动
首先,确保您的Python环境版本在3.9到3.12之间。然后,通过以下命令安装EDSL:
pip install edsl
接下来,您需要创建一个账户以在Expected Parrot服务器上运行调查,并访问存储的响应的通用远程缓存,以便复制结果。
- 选择使用自己的语言模型密钥,或者获取一个Expected Parrot密钥来一次性访问所有可用模型。
- 安全地管理您团队的密钥、开支和使用情况。
运行入门教程和探索其他演示笔记本,以了解各种用例。
3. 应用案例和最佳实践
以下是使用EDSL的一些典型应用案例:
设计调查问卷
使用EDSL中的QuestionMultipleChoice类来创建一个多项选择题:
from edsl import QuestionMultipleChoice
q = QuestionMultipleChoice(
question_name="example",
question_text="How do you feel today?",
question_options=["Bad", "OK", "Good"]
)
results = q.run()
使用参数化提示
利用ScenarioList和QuestionLinearScale来轻松控制参数化提示:
from edsl import ScenarioList, QuestionLinearScale
q = QuestionLinearScale(
question_name="example",
question_text="How much do you enjoy {{ scenario.activity }}?",
question_options=[1, 2, 3, 4, 5],
option_labels={1: "Not at all", 5: "Very much"}
)
sl = ScenarioList.from_list("activity", ["coding", "sleeping"])
results = q.by(sl).run()
构建AI代理人格
创建带有相关特征的AI代理,为调查提供多样化的响应:
from edsl import AgentList, QuestionList
al = AgentList(
Agent(traits={"persona": p}) for p in ["botanist", "detective"]
)
q = QuestionList(
question_name="example",
question_text="What are your favorite colors?",
max_list_items=3
)
results = q.by(al).run()
简化LLM访问
选择使用自己的API密钥或Expected Parrot密钥来访问所有可用的LLM:
from edsl import ModelList, QuestionFreeText
ml = ModelList(Model(m) for m in ["gpt-4o", "gemini-1.5-flash"])
q = QuestionFreeText(
question_name="example",
question_text="What is your top tip for using LLMs to answer surveys?"
)
results = q.by(ml).run()
使用管道和跳过逻辑
构建丰富的数据标注流程,并添加调查逻辑,如跳过和停止规则:
from edsl import QuestionMultipleChoice, QuestionFreeText, Survey
q1 = QuestionMultipleChoice(
question_name="color",
question_text="What is your favorite primary color?",
question_options=["red", "yellow", "blue"]
)
q2 = QuestionFreeText(
question_name="flower",
question_text="Name a flower that is {{ color.answer }}"
)
survey = Survey(questions=[q1, q2])
results = survey.run()
4. 典型生态项目
EDSL项目作为一个开源项目,其生态系统包括:
- Coop:一个集成的平台,用于运行实验、分享工作流程和启动混合人类/AI调查。
- Discord:获取更新和讨论的社区平台。
- GitHub:项目的代码托管和开发协作平台。
- PyPI:Python软件包索引,用于包的安装和管理。
通过这些平台和工具,研究人员和开发者可以更有效地进行AI驱动的社会科学和市场研究。
登录后查看全文
热门项目推荐
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C043
MiniMax-M2.1从多语言软件开发自动化到复杂多步骤办公流程执行,MiniMax-M2.1 助力开发者构建下一代自主应用——全程保持完全透明、可控且易于获取。Python00
kylin-wayland-compositorkylin-wayland-compositor或kylin-wlcom(以下简称kywc)是一个基于wlroots编写的wayland合成器。 目前积极开发中,并作为默认显示服务器随openKylin系统发布。 该项目使用开源协议GPL-1.0-or-later,项目中来源于其他开源项目的文件或代码片段遵守原开源协议要求。C01
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
agent-studioopenJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力TSX0121
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
项目优选
收起
deepin linux kernel
C
26
10
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
435
3.3 K
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1
🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
65
19
暂无简介
Dart
696
163
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
696
369
喝着茶写代码!最易用的自托管一站式代码托管平台,包含Git托管,代码审查,团队协作,软件包和CI/CD。
Go
23
0
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.23 K
674
Ascend Extension for PyTorch
Python
242
279
React Native鸿蒙化仓库
JavaScript
270
328