pg_duckdb扩展中的权限控制问题分析与解决方案
在PostgreSQL生态系统中,pg_duckdb扩展是一个非常有价值的工具,它允许用户在PostgreSQL环境中执行DuckDB查询。然而,近期发现该扩展在权限控制方面存在一些需要改进的问题。
当前权限控制的问题
目前pg_uckdb扩展存在两个主要的安全性问题:
-
序列权限问题:非超级用户尝试使用扩展时会遇到"permission denied for sequence secrets_table_seq"错误。这是由于序列权限未正确配置导致的,虽然可以通过GRANT语句临时解决,但这会带来更大的安全隐患。
-
绕过表级权限检查:更严重的问题是,当用户启用duckdb.execution参数后,可以绕过PostgreSQL原有的表级权限控制,直接访问他们有权限的schema中的所有表数据。这种行为完全违背了PostgreSQL的安全模型。
技术原理分析
PostgreSQL拥有完善的权限控制系统,包括表级、列级和行级权限控制。而DuckDB作为一个嵌入式分析型数据库,其权限模型与PostgreSQL有所不同。pg_duckdb扩展在执行查询时,目前未能充分继承PostgreSQL的权限检查机制。
解决方案设计
针对上述问题,我们提出以下解决方案:
-
权限检查机制:在执行DuckDB查询前,先使用PostgreSQL的查询规划器对原始SQL进行解析和权限检查。虽然不实际使用生成的执行计划,但可以利用PostgreSQL内置的完善权限验证机制。
-
行级安全处理:当检测到表启用了行级安全(RLS)时,应当直接拒绝通过DuckDB执行查询,因为DuckDB目前无法正确处理PostgreSQL的RLS策略。
-
细粒度权限配置:合理配置序列和其他数据库对象的权限,避免使用过于宽松的PUBLIC授权。
实现建议
在实际实现上,可以采用以下技术方案:
- 在执行DuckDB查询前,先调用PostgreSQL的标准查询解析流程
- 检查解析过程中是否有权限错误或RLS标记
- 只有通过所有安全检查后,才将查询转发给DuckDB执行
- 对于权限不足或存在RLS的情况,回退到PostgreSQL原生执行或直接报错
安全影响评估
这种设计既保持了DuckDB查询的性能优势,又确保了与PostgreSQL安全模型的一致性。虽然增加了额外的解析开销,但对于安全敏感的查询来说,这种代价是必要的。
未来优化方向
长期来看,可以考虑:
- 将PostgreSQL的权限模型映射到DuckDB
- 支持行级安全策略的转换执行
- 开发更精细的权限缓存机制减少重复检查
这些改进将使pg_duckdb扩展在保持性能优势的同时,完全兼容PostgreSQL的安全体系,适合在企业级环境中部署使用。
ERNIE-4.5-VL-28B-A3B-ThinkingERNIE-4.5-VL-28B-A3B-Thinking 是 ERNIE-4.5-VL-28B-A3B 架构的重大升级,通过中期大规模视觉-语言推理数据训练,显著提升了模型的表征能力和模态对齐,实现了多模态推理能力的突破性飞跃Python00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Python00
HunyuanVideo-1.5暂无简介00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00