Yosys项目中哈希函数对时序逻辑综合的影响分析
问题背景
在数字电路综合工具Yosys的开发过程中,开发团队发现一个有趣的现象:当修改Yosys内部使用的哈希函数时,某些测试用例会意外失败。经过深入调查,这个问题特别出现在处理带有异步复位/置位的触发器(DFFSR)模型的技术映射过程中。
问题现象
当使用不同的哈希函数实现时,Yosys对以下Verilog代码的综合结果会出现差异:
module dffsr(input CLK, D, CLEAR, PRESET, output reg Q);
always @(posedge CLK, posedge CLEAR, posedge PRESET)
if (CLEAR)
Q <= 0;
else if (PRESET)
Q <= 1;
else
Q <= D;
endmodule
正常情况下,Yosys会生成保持CLEAR优先于PRESET的综合结果。但当哈希函数改变后,综合结果会意外地反转这两个信号的优先级。
技术原理分析
这个问题实际上揭示了Yosys内部处理异步信号优先级时的一个潜在设计问题。在Yosys的处理流程中:
-
proc_arst阶段:首先将Verilog代码转换为中间表示,其中异步信号的优先级通过同步规则的顺序明确表示。例如,CLEAR规则排在PRESET规则之前,表示CLEAR具有更高优先级。
-
proc_dff阶段:这些同步规则被存储在一个std::map中,键是触发信号(SigSpec)。std::map默认使用std::less进行排序,而RTLIL::SigSpec的比较操作符依赖于哈希值。
问题根源
问题的本质在于:
- std::map的排序依赖于哈希函数,而不同的哈希函数会导致不同的元素排序
- 原始Verilog代码中明确的信号优先级(CLEAR > PRESET)在转换为std::map后丢失
- 后续处理阶段(gen_dffsr_complex)从std::map中读取规则时,顺序可能已经改变
解决方案
修复方案的核心思想是保持处理顺序与设计顺序一致。具体实现上:
- 不再依赖std::map的自动排序特性
- 改为按规则插入顺序处理SigSpec,这对应于原始设计中的信号声明顺序
- 确保异步信号的优先级在综合过程中得到保持
技术启示
这个案例为我们提供了几个重要的技术启示:
-
工具实现的确定性:EDA工具在不同环境下应产生确定性的结果,不应依赖于实现细节(如哈希函数)
-
中间表示设计:在编译器/综合器的中间表示设计中,显式保持重要语义信息(如信号优先级)至关重要
-
数据结构选择:在需要保持元素顺序的场景中,应谨慎选择数据结构,避免使用自动排序的容器
总结
Yosys中这个由哈希函数引起的问题,实际上反映了数字电路综合工具在处理异步信号优先级时的一个设计缺陷。通过分析问题根源并修改实现方式,不仅解决了特定测试用例失败的问题,更增强了工具在不同环境下的行为一致性。这对于保证数字电路综合结果的可靠性和可预测性具有重要意义。
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~059CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。07GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0381- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
项目优选









