ReVanced Manager在Android 15上编译YouTube资源失败问题分析
问题背景
近期有用户报告在使用ReVanced Manager 1.20.1对YouTube 19.16.39进行补丁时遇到了编译资源阶段失败的问题。该问题出现在Google Pixel 8 Pro设备上,运行的是最新的Android 15系统(AP31.240517.031)。经过多次测试,无论是使用常规模式还是APK选择模式,问题都持续存在。
错误现象
从日志分析,问题主要发生在"Compiling modified resources"阶段。具体错误表现为:
brut.androlib.exceptions.AndrolibException: brut.common.BrutException:
could not exec (exit code = 1): [/data/app/.../lib/arm64/libaapt2.so, link, ...]
这表明资源编译器aapt2在执行链接操作时返回了错误代码1,导致整个补丁过程失败。值得注意的是,在尝试使用所有补丁(除gmscore外)时问题得到解决,这暗示问题可能与特定补丁组合有关。
技术分析
1. 底层编译工具问题
错误日志显示问题出在aapt2资源编译器上。aapt2是Android Asset Packaging Tool的第二个版本,负责处理APK中的资源编译和链接。在Android 15系统上,可能由于以下原因导致失败:
- 系统权限模型变更导致资源编译器无法正常访问临时文件
- 新的资源处理机制与旧版aapt2存在兼容性问题
- SELinux策略或文件系统访问限制
2. 补丁组合影响
用户报告称使用特定补丁组合时会出现问题,特别是当包含"Change header"和"Custom branding"补丁时。虽然这两个补丁默认是禁用的,但即使用户没有修改它们的选项,也可能引发问题。这表明:
- 某些补丁可能对资源修改有特殊要求
- 多个补丁同时应用时可能产生资源冲突
- 资源ID分配在特定条件下可能出现问题
3. Android 15兼容性
作为新发布的系统版本,Android 15可能引入了以下变化影响ReVanced Manager:
- 新的资源压缩或优化算法
- 更改的资源表结构
- 增强的资源验证机制
解决方案
对于遇到此问题的用户,可以尝试以下解决方法:
-
使用完整APK而非分割APK:确保使用完整的YouTube APK文件进行补丁,避免使用应用商店下载的分割APK(bundle)。
-
简化补丁组合:暂时减少应用的补丁数量,特别是避免同时使用"Change header"和"Custom branding"补丁。
-
检查补丁选项:确认没有无意中修改了任何补丁的默认选项,特别是资源相关的补丁。
-
等待更新:开发团队可能需要在未来版本中针对Android 15进行专门适配。
技术建议
对于开发者而言,此问题提示需要:
- 更新内嵌的aapt2工具版本,确保与最新Android系统兼容
- 加强对资源编译阶段的错误处理和日志记录
- 针对Android 15进行全面的兼容性测试
- 考虑实现更智能的资源冲突检测和解决机制
总结
ReVanced Manager在Android 15系统上编译YouTube资源时出现的问题,反映了新系统版本与现有工具链之间的兼容性挑战。虽然通过调整补丁组合可以暂时规避问题,但根本解决需要开发团队对新系统的深入适配。用户在当前阶段可以尝试上述解决方案,同时关注项目的后续更新。
kernelopenEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。C094
baihu-dataset异构数据集“白虎”正式开源——首批开放10w+条真实机器人动作数据,构建具身智能标准化训练基座。00
mindquantumMindQuantum is a general software library supporting the development of applications for quantum computation.Python058
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00
GLM-4.7GLM-4.7上线并开源。新版本面向Coding场景强化了编码能力、长程任务规划与工具协同,并在多项主流公开基准测试中取得开源模型中的领先表现。 目前,GLM-4.7已通过BigModel.cn提供API,并在z.ai全栈开发模式中上线Skills模块,支持多模态任务的统一规划与协作。Jinja00
AgentCPM-Explore没有万亿参数的算力堆砌,没有百万级数据的暴力灌入,清华大学自然语言处理实验室、中国人民大学、面壁智能与 OpenBMB 开源社区联合研发的 AgentCPM-Explore 智能体模型基于仅 4B 参数的模型,在深度探索类任务上取得同尺寸模型 SOTA、越级赶上甚至超越 8B 级 SOTA 模型、比肩部分 30B 级以上和闭源大模型的效果,真正让大模型的长程任务处理能力有望部署于端侧。Jinja00