Seurat项目中Harmony整合与聚类顺序对结果的影响分析
2025-07-01 11:38:48作者:宣利权Counsellor
引言
在单细胞数据分析中,批次效应校正和细胞聚类是核心分析步骤。Seurat作为主流的单细胞分析工具包,与Harmony整合工具的配合使用非常普遍。然而,许多用户在实践过程中发现,不同的分析流程顺序会导致不一致的聚类结果。本文将深入探讨这一现象的原因,并提供解决方案。
问题现象
在Seurat分析流程中,当用户尝试以下三种不同的分析顺序时,会得到不同的聚类结果:
- 先聚类后Harmony:先进行FindNeighbors/FindClusters/RunUMAP,再进行Harmony整合
- 直接Harmony后聚类:仅进行Harmony整合后进行聚类
- 重复Harmony和聚类:进行两次Harmony整合和聚类流程
尽管使用了相同的随机种子和参数设置,这三种流程产生的UMAP可视化结果和细胞聚类分配存在明显差异。
技术原理分析
Harmony的工作原理
Harmony是一种基于PCA空间的批次效应校正算法,它通过迭代优化过程调整各批次的细胞在低维空间的分布。这一过程包含随机初始化步骤,因此结果会受到随机数生成的影响。
Seurat聚类流程的随机性
Seurat的FindClusters函数基于Louvain或Leiden算法,这些算法在初始化阶段也涉及随机过程。虽然用户可以设置随机种子,但如果在不同步骤间有其他随机操作,种子效果会被干扰。
随机数生成的链式反应
在R环境中,随机数生成器状态是全局的。当执行一个随机操作后,随机数生成器的内部状态会改变,影响后续随机操作的结果。这就是为什么在不同位置设置种子会产生不同结果。
解决方案
正确的随机种子设置方法
为确保结果可重复性,应在每个涉及随机性的关键步骤前重新设置种子:
# 标准化和PCA
seurat.obj <- NormalizeData(seurat.obj)
seurat.obj <- FindVariableFeatures(seurat.obj)
seurat.obj <- ScaleData(seurat.obj)
seurat.obj <- RunPCA(seurat.obj, npcs=50)
# Harmony整合前设置种子
set.seed(123)
seurat.obj <- RunHarmony(seurat.obj, group.by.vars="sample_name")
# 聚类前设置种子
set.seed(456)
seurat.obj <- FindNeighbors(seurat.obj, dims=1:40)
seurat.obj <- FindClusters(seurat.obj, resolution=1.2)
# UMAP前设置种子
set.seed(789)
seurat.obj <- RunUMAP(seurat.obj, dims=1:40)
分析流程建议
- 推荐流程:直接进行Harmony整合后再聚类,避免不必要的重复步骤
- 批次效应评估:可先进行无Harmony的聚类和可视化,作为批次效应评估参考
- 结果验证:通过多种随机种子验证结果的稳定性
实践建议
- 文档记录:详细记录每个随机步骤使用的种子值
- 参数探索:对关键参数(如Harmony的theta、聚类分辨率)进行系统测试
- 结果比较:使用Silhouette指数等指标客观评估不同流程的聚类质量
- 计算环境:确保R版本和包版本一致,不同版本可能产生不同随机数序列
结论
在Seurat分析流程中,理解随机性来源和正确控制随机种子是获得可重复结果的关键。特别是对于包含多个随机步骤的复杂流程(如Harmony整合+聚类),需要在每个关键步骤前明确设置种子。通过规范化的分析流程和严格的随机控制,可以确保单细胞分析结果的可重复性和可靠性。
对于需要严格可重复的研究,建议将完整的分析脚本(包括所有种子设置)作为补充材料提供,以便其他研究者能够完全复现分析结果。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0370Hunyuan3D-Part
腾讯混元3D-Part00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0102AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp音乐播放器项目中的函数调用问题解析2 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析3 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析4 freeCodeCamp课程视频测验中的Tab键导航问题解析5 freeCodeCamp课程中屏幕放大器知识点优化分析6 freeCodeCamp Cafe Menu项目中link元素的void特性解析7 freeCodeCamp英语课程填空题提示缺失问题分析8 freeCodeCamp 课程中关于角色与职责描述的语法优化建议 9 freeCodeCamp全栈开发课程中测验游戏项目的参数顺序问题解析10 freeCodeCamp全栈开发课程中React实验项目的分类修正
最新内容推荐
ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 Jetson TX2开发板官方资源完全指南:从入门到精通 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 WebVideoDownloader:高效网页视频抓取工具全面使用指南 TextAnimator for Unity:打造专业级文字动画效果的终极解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 32位ECC纠错Verilog代码:提升FPGA系统可靠性的关键技术方案 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 深入解析Windows内核模式驱动管理器:系统驱动管理的终极利器 CrystalIndex资源文件管理系统:高效索引与文件管理的最佳实践指南
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
205
2.19 K

暂无简介
Dart
514
115

Ascend Extension for PyTorch
Python
62
95

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
550
86

React Native鸿蒙化仓库
C++
208
285

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
976
576

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
193