Seurat项目中Harmony整合与聚类顺序对结果的影响分析
2025-07-01 11:08:18作者:宣利权Counsellor
引言
在单细胞数据分析中,批次效应校正和细胞聚类是核心分析步骤。Seurat作为主流的单细胞分析工具包,与Harmony整合工具的配合使用非常普遍。然而,许多用户在实践过程中发现,不同的分析流程顺序会导致不一致的聚类结果。本文将深入探讨这一现象的原因,并提供解决方案。
问题现象
在Seurat分析流程中,当用户尝试以下三种不同的分析顺序时,会得到不同的聚类结果:
- 先聚类后Harmony:先进行FindNeighbors/FindClusters/RunUMAP,再进行Harmony整合
- 直接Harmony后聚类:仅进行Harmony整合后进行聚类
- 重复Harmony和聚类:进行两次Harmony整合和聚类流程
尽管使用了相同的随机种子和参数设置,这三种流程产生的UMAP可视化结果和细胞聚类分配存在明显差异。
技术原理分析
Harmony的工作原理
Harmony是一种基于PCA空间的批次效应校正算法,它通过迭代优化过程调整各批次的细胞在低维空间的分布。这一过程包含随机初始化步骤,因此结果会受到随机数生成的影响。
Seurat聚类流程的随机性
Seurat的FindClusters函数基于Louvain或Leiden算法,这些算法在初始化阶段也涉及随机过程。虽然用户可以设置随机种子,但如果在不同步骤间有其他随机操作,种子效果会被干扰。
随机数生成的链式反应
在R环境中,随机数生成器状态是全局的。当执行一个随机操作后,随机数生成器的内部状态会改变,影响后续随机操作的结果。这就是为什么在不同位置设置种子会产生不同结果。
解决方案
正确的随机种子设置方法
为确保结果可重复性,应在每个涉及随机性的关键步骤前重新设置种子:
# 标准化和PCA
seurat.obj <- NormalizeData(seurat.obj)
seurat.obj <- FindVariableFeatures(seurat.obj)
seurat.obj <- ScaleData(seurat.obj)
seurat.obj <- RunPCA(seurat.obj, npcs=50)
# Harmony整合前设置种子
set.seed(123)
seurat.obj <- RunHarmony(seurat.obj, group.by.vars="sample_name")
# 聚类前设置种子
set.seed(456)
seurat.obj <- FindNeighbors(seurat.obj, dims=1:40)
seurat.obj <- FindClusters(seurat.obj, resolution=1.2)
# UMAP前设置种子
set.seed(789)
seurat.obj <- RunUMAP(seurat.obj, dims=1:40)
分析流程建议
- 推荐流程:直接进行Harmony整合后再聚类,避免不必要的重复步骤
- 批次效应评估:可先进行无Harmony的聚类和可视化,作为批次效应评估参考
- 结果验证:通过多种随机种子验证结果的稳定性
实践建议
- 文档记录:详细记录每个随机步骤使用的种子值
- 参数探索:对关键参数(如Harmony的theta、聚类分辨率)进行系统测试
- 结果比较:使用Silhouette指数等指标客观评估不同流程的聚类质量
- 计算环境:确保R版本和包版本一致,不同版本可能产生不同随机数序列
结论
在Seurat分析流程中,理解随机性来源和正确控制随机种子是获得可重复结果的关键。特别是对于包含多个随机步骤的复杂流程(如Harmony整合+聚类),需要在每个关键步骤前明确设置种子。通过规范化的分析流程和严格的随机控制,可以确保单细胞分析结果的可重复性和可靠性。
对于需要严格可重复的研究,建议将完整的分析脚本(包括所有种子设置)作为补充材料提供,以便其他研究者能够完全复现分析结果。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
最新内容推荐
Error Correction Coding——mathematical methods and algorithms:深入理解纠错编码的数学精髓 HP DL380 Gen9iLO固件资源下载:提升服务器管理效率的利器 RTD2270CLW/RTD2280DLW VGA转LVDS原理图下载介绍:项目核心功能与场景 JADE软件下载介绍:专业的XRD数据分析工具 常见材料性能参数pdf下载说明:一键获取材料性能参数,助力工程设计与分析 SVPWM的原理及法则推导和控制算法详解第四修改版:让电机控制更高效 Oracle Instant Client for Microsoft Windows x64 10.2.0.5下载资源:高效访问Oracle数据库的利器 鼎捷软件tiptop5.3技术手册:快速掌握4gl语言的利器 源享科技资料大合集介绍:科技学习者的全面资源库 潘通色标薄全系列资源下载说明:设计师的创意助手
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
523
3.72 K
Ascend Extension for PyTorch
Python
328
387
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
876
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
335
161
暂无简介
Dart
762
187
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.33 K
745
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
136