Seurat项目中Harmony整合与聚类顺序对结果的影响分析
2025-07-01 01:59:23作者:宣利权Counsellor
引言
在单细胞数据分析中,批次效应校正和细胞聚类是核心分析步骤。Seurat作为主流的单细胞分析工具包,与Harmony整合工具的配合使用非常普遍。然而,许多用户在实践过程中发现,不同的分析流程顺序会导致不一致的聚类结果。本文将深入探讨这一现象的原因,并提供解决方案。
问题现象
在Seurat分析流程中,当用户尝试以下三种不同的分析顺序时,会得到不同的聚类结果:
- 先聚类后Harmony:先进行FindNeighbors/FindClusters/RunUMAP,再进行Harmony整合
- 直接Harmony后聚类:仅进行Harmony整合后进行聚类
- 重复Harmony和聚类:进行两次Harmony整合和聚类流程
尽管使用了相同的随机种子和参数设置,这三种流程产生的UMAP可视化结果和细胞聚类分配存在明显差异。
技术原理分析
Harmony的工作原理
Harmony是一种基于PCA空间的批次效应校正算法,它通过迭代优化过程调整各批次的细胞在低维空间的分布。这一过程包含随机初始化步骤,因此结果会受到随机数生成的影响。
Seurat聚类流程的随机性
Seurat的FindClusters函数基于Louvain或Leiden算法,这些算法在初始化阶段也涉及随机过程。虽然用户可以设置随机种子,但如果在不同步骤间有其他随机操作,种子效果会被干扰。
随机数生成的链式反应
在R环境中,随机数生成器状态是全局的。当执行一个随机操作后,随机数生成器的内部状态会改变,影响后续随机操作的结果。这就是为什么在不同位置设置种子会产生不同结果。
解决方案
正确的随机种子设置方法
为确保结果可重复性,应在每个涉及随机性的关键步骤前重新设置种子:
# 标准化和PCA
seurat.obj <- NormalizeData(seurat.obj)
seurat.obj <- FindVariableFeatures(seurat.obj)
seurat.obj <- ScaleData(seurat.obj)
seurat.obj <- RunPCA(seurat.obj, npcs=50)
# Harmony整合前设置种子
set.seed(123)
seurat.obj <- RunHarmony(seurat.obj, group.by.vars="sample_name")
# 聚类前设置种子
set.seed(456)
seurat.obj <- FindNeighbors(seurat.obj, dims=1:40)
seurat.obj <- FindClusters(seurat.obj, resolution=1.2)
# UMAP前设置种子
set.seed(789)
seurat.obj <- RunUMAP(seurat.obj, dims=1:40)
分析流程建议
- 推荐流程:直接进行Harmony整合后再聚类,避免不必要的重复步骤
- 批次效应评估:可先进行无Harmony的聚类和可视化,作为批次效应评估参考
- 结果验证:通过多种随机种子验证结果的稳定性
实践建议
- 文档记录:详细记录每个随机步骤使用的种子值
- 参数探索:对关键参数(如Harmony的theta、聚类分辨率)进行系统测试
- 结果比较:使用Silhouette指数等指标客观评估不同流程的聚类质量
- 计算环境:确保R版本和包版本一致,不同版本可能产生不同随机数序列
结论
在Seurat分析流程中,理解随机性来源和正确控制随机种子是获得可重复结果的关键。特别是对于包含多个随机步骤的复杂流程(如Harmony整合+聚类),需要在每个关键步骤前明确设置种子。通过规范化的分析流程和严格的随机控制,可以确保单细胞分析结果的可重复性和可靠性。
对于需要严格可重复的研究,建议将完整的分析脚本(包括所有种子设置)作为补充材料提供,以便其他研究者能够完全复现分析结果。
登录后查看全文
热门项目推荐
- DDeepSeek-V3.1-BaseDeepSeek-V3.1 是一款支持思考模式与非思考模式的混合模型Python00
- QQwen-Image-Edit基于200亿参数Qwen-Image构建,Qwen-Image-Edit实现精准文本渲染与图像编辑,融合语义与外观控制能力Jinja00
GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~044CommonUtilLibrary
快速开发工具类收集,史上最全的开发工具类,欢迎Follow、Fork、StarJava04GitCode百大开源项目
GitCode百大计划旨在表彰GitCode平台上积极推动项目社区化,拥有广泛影响力的G-Star项目,入选项目不仅代表了GitCode开源生态的蓬勃发展,也反映了当下开源行业的发展趋势。06GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00openHiTLS
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!C0300- WWan2.2-S2V-14B【Wan2.2 全新发布|更强画质,更快生成】新一代视频生成模型 Wan2.2,创新采用MoE架构,实现电影级美学与复杂运动控制,支持720P高清文本/图像生成视频,消费级显卡即可流畅运行,性能达业界领先水平Python00
- GGLM-4.5-AirGLM-4.5 系列模型是专为智能体设计的基础模型。GLM-4.5拥有 3550 亿总参数量,其中 320 亿活跃参数;GLM-4.5-Air采用更紧凑的设计,拥有 1060 亿总参数量,其中 120 亿活跃参数。GLM-4.5模型统一了推理、编码和智能体能力,以满足智能体应用的复杂需求Jinja00
Yi-Coder
Yi Coder 编程模型,小而强大的编程助手HTML013
热门内容推荐
最新内容推荐
OMNeT++中文使用手册:网络仿真的终极指南与实用教程 基于Matlab的等几何分析IGA软件包:工程计算与几何建模的完美融合 PADS元器件位号居中脚本:提升PCB设计效率的自动化利器 电脑PC网易云音乐免安装皮肤插件使用指南:个性化音乐播放体验 Python Django图书借阅管理系统:高效智能的图书馆管理解决方案 Python开发者的macOS终极指南:VSCode安装配置全攻略 WebVideoDownloader:高效网页视频抓取工具全面使用指南 ReportMachine.v7.0D5-XE10:Delphi报表生成利器深度解析与实战指南 PhysioNet医学研究数据库:临床数据分析与生物信号处理的权威资源指南 海康威视DS-7800N-K1固件升级包全面解析:提升安防设备性能的关键资源
项目优选
收起

React Native鸿蒙化仓库
C++
176
261

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
860
511

🔥🔥🔥ShopXO企业级免费开源商城系统,可视化DIY拖拽装修、包含PC、H5、多端小程序(微信+支付宝+百度+头条&抖音+QQ+快手)、APP、多仓库、多商户、多门店、IM客服、进销存,遵循MIT开源协议发布、基于ThinkPHP8框架研发
JavaScript
93
15

openGauss kernel ~ openGauss is an open source relational database management system
C++
129
182

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
259
300

deepin linux kernel
C
22
5

🍒 Cherry Studio 是一款支持多个 LLM 提供商的桌面客户端
TypeScript
595
57

为仓颉编程语言开发者打造活跃、开放、高质量的社区环境
Markdown
1.07 K
0

本仓将收集和展示仓颉鸿蒙应用示例代码,欢迎大家投稿,在仓颉鸿蒙社区展现你的妙趣设计!
Cangjie
398
371

本仓将收集和展示高质量的仓颉示例代码,欢迎大家投稿,让全世界看到您的妙趣设计,也让更多人通过您的编码理解和喜爱仓颉语言。
Cangjie
332
1.08 K