如何在非pytest场景中使用Hypothesis设置随机种子
2025-05-29 22:31:55作者:董灵辛Dennis
Hypothesis是一个强大的Python属性测试库,主要用于生成随机测试数据。虽然它主要设计用于与pytest等测试框架集成,但有时我们也会在非测试场景中使用它来生成随机数据实例。
非测试场景中的Hypothesis使用
在实际开发中,我们可能会遇到这样的需求:需要生成一个复杂数据结构的实例,比如深度嵌套的数据类树结构。这些实例可能用于手动集成测试、数据模拟或其他非自动化测试场景。Hypothesis的from_type
策略非常适合于这种用例,因为它能够自动为给定类型生成实例。
问题背景
当我们在非pytest环境中使用Hypothesis时,可能会遇到一个常见问题:如何确保生成的随机数据是可重现的。在测试场景中,我们可以使用@seed
装饰器来固定随机种子,但在普通Python脚本中直接使用这个功能并不直观。
解决方案
虽然Hypothesis官方没有直接支持在非@given
装饰器场景下设置种子,但我们可以通过一个巧妙的方法来实现:
- 创建一个临时测试函数
- 使用
@seed
装饰器固定随机种子 - 通过
max_examples
控制生成数量 - 在函数内部收集生成的实例
这种方法利用了Hypothesis的测试功能,但实际上是为了获取可重现的随机数据。
实现示例
下面是一个完整的实现示例,展示了如何为嵌套数据类生成可重现的随机实例:
from dataclasses import dataclass
from typing import TypeVar
import hypothesis
import hypothesis.strategies
@dataclass
class Child:
f1: float
f2: float | None
@dataclass
class Parent:
child: Child
T = TypeVar("T")
def generate(cls: type[T], seed: int) -> T:
objects = []
@hypothesis.seed(seed)
@hypothesis.given(hypothesis.strategies.from_type(cls))
@hypothesis.settings(max_examples=10)
def collect_examples(o):
objects.append(o)
collect_examples()
return objects[-1] # 通常最后一个示例更有代表性
使用建议
- 种子选择:使用固定种子可以确保每次运行生成相同的数据
- 示例数量:适当增加
max_examples
可以获取更多样化的数据 - 数据选择:第一个生成的示例往往比较简单,可以选择后面的示例作为更有代表性的数据
- 性能考虑:对于复杂类型,生成多个示例可能会有性能开销
替代方案
如果这种解决方案感觉不够直观,也可以考虑以下替代方法:
- 使用
hypothesis.extra.dataclasses
模块专门处理数据类 - 对于简单需求,可以手动构建策略而不是依赖
from_type
- 将生成逻辑封装为测试用例的一部分,然后导出生成的数据
总结
虽然Hypothesis主要设计用于属性测试,但它的数据生成能力在各种场景下都非常有用。通过巧妙地利用测试装饰器,我们可以在非测试环境中获得可重现的随机数据生成能力。这种方法特别适合需要稳定数据样本的开发、演示和集成测试场景。
登录后查看全文
热门项目推荐
相关项目推荐
PaddleOCR-VL
PaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-V3.2-ExpDeepSeek-V3.2-Exp是DeepSeek推出的实验性模型,基于V3.1-Terminus架构,创新引入DeepSeek Sparse Attention稀疏注意力机制,在保持模型输出质量的同时,大幅提升长文本场景下的训练与推理效率。该模型在MMLU-Pro、GPQA-Diamond等多领域公开基准测试中表现与V3.1-Terminus相当,支持HuggingFace、SGLang、vLLM等多种本地运行方式,开源内核设计便于研究,采用MIT许可证。【此简介由AI生成】Python00
openPangu-Ultra-MoE-718B-V1.1
昇腾原生的开源盘古 Ultra-MoE-718B-V1.1 语言模型Python00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++0123AI内容魔方
AI内容专区,汇集全球AI开源项目,集结模块、可组合的内容,致力于分享、交流。02Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile011
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
23
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
227
2.28 K

暂无简介
Dart
527
116

React Native鸿蒙化仓库
JavaScript
214
288

Ascend Extension for PyTorch
Python
69
101

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
989
586

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
566
102

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.02 K
399

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
9
1

openGauss kernel ~ openGauss is an open source relational database management system
C++
148
197