Goro 项目使用教程
2024-09-25 11:45:45作者:滕妙奇
1. 项目目录结构及介绍
Goro 是一个用 Go 语言编写的高级机器学习库,其目录结构如下:
goro/
├── examples/
│ └── mnist/
├── pkg/
│ └── v1/
├── static/
├── vendor/
├── .DS_Store
├── LICENSE
├── README.md
├── doc.go
├── go.mod
├── go.sum
目录结构介绍
- examples/: 包含项目的示例代码,例如
mnist示例。 - pkg/v1/: 包含项目的核心代码,版本为
v1。 - static/: 可能包含静态资源文件。
- vendor/: 包含项目的依赖库。
- .DS_Store: macOS 系统文件,通常可以忽略。
- LICENSE: 项目的开源许可证文件。
- README.md: 项目的介绍文档。
- doc.go: 项目的文档文件。
- go.mod: Go 模块文件,定义了项目的依赖。
- go.sum: Go 模块的校验和文件。
2. 项目启动文件介绍
Goro 项目的启动文件通常是 examples/mnist/main.go,这是一个示例文件,展示了如何使用 Goro 库来训练和预测 MNIST 数据集。
启动文件示例
package main
import (
"github.com/aunum/goro/pkg/v1/model"
"github.com/aunum/goro/pkg/v1/layer"
)
func main() {
// 创建输入 'x',表示 MNIST 图像
x := model.NewInput("x", []int{1, 28, 28})
// 创建输出 'y',表示标签
y := model.NewInput("y", []int{10})
// 创建一个新的顺序模型,命名为 'mnist'
mnistModel := model.NewSequential("mnist")
// 添加层到模型中
mnistModel.AddLayers(
layer.Conv2D{Input: 1, Output: 32, Width: 3, Height: 3},
layer.MaxPooling2D{},
layer.Conv2D{Input: 32, Output: 64, Width: 3, Height: 3},
layer.MaxPooling2D{},
layer.Conv2D{Input: 64, Output: 128, Width: 3, Height: 3},
layer.MaxPooling2D{},
layer.Flatten{},
layer.FC{Input: 128 * 3 * 3, Output: 100},
layer.FC{Input: 100, Output: 10, Activation: layer.Softmax},
)
// 选择优化器
optimizer := model.NewRMSPropSolver()
// 编译模型
mnistModel.Compile(x, y, model.WithOptimizer(optimizer), model.WithLoss(model.CrossEntropy), model.WithBatchSize(100))
// 训练模型
mnistModel.Fit(xTrain, yTrain)
// 使用模型进行预测
prediction := mnistModel.Predict(xTest)
}
3. 项目配置文件介绍
Goro 项目没有明确的配置文件,但可以通过 go.mod 文件来管理项目的依赖。
go.mod 文件示例
module github.com/aunum/goro
go 1.16
require (
gorgonia.org/gorgonia v0.9.17
gorgonia.org/tensor v0.9.17
)
配置文件介绍
- module: 定义了项目的模块名称。
- go: 定义了 Go 语言的版本。
- require: 列出了项目所需的依赖库及其版本。
通过 go.mod 文件,可以轻松管理项目的依赖关系,确保项目在不同环境中的一致性。
登录后查看全文
热门项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00
GLM-4.7-FlashGLM-4.7-Flash 是一款 30B-A3B MoE 模型。作为 30B 级别中的佼佼者,GLM-4.7-Flash 为追求性能与效率平衡的轻量化部署提供了全新选择。Jinja00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
KuiklyUI基于KMP技术的高性能、全平台开发框架,具备统一代码库、极致易用性和动态灵活性。 Provide a high-performance, full-platform development framework with unified codebase, ultimate ease of use, and dynamic flexibility. 注意:本仓库为Github仓库镜像,PR或Issue请移步至Github发起,感谢支持!Kotlin07
compass-metrics-modelMetrics model project for the OSS CompassPython00
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
522
3.71 K
Ascend Extension for PyTorch
Python
327
384
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
875
576
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
334
161
暂无简介
Dart
762
184
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.32 K
744
Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
12
1
React Native鸿蒙化仓库
JavaScript
302
349
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
112
134