Pandas 数据分析:计算工具详解
2025-05-31 10:10:43作者:邬祺芯Juliet
概述
Pandas 作为 Python 数据分析的核心库,提供了丰富的计算工具来处理数据。本文将深入介绍 Pandas 中的各种计算功能,包括统计函数、窗口计算等高级特性,帮助数据分析师更好地利用 Pandas 进行数据处理。
统计函数
百分比变化计算
在时间序列分析中,计算百分比变化是一项常见需求。Pandas 提供了 pct_change() 方法:
import pandas as pd
import numpy as np
# 创建Series示例
ser = pd.Series(np.random.randn(8))
print(ser.pct_change())
# DataFrame示例
df = pd.DataFrame(np.random.randn(10, 4))
print(df.pct_change(periods=3)) # 计算3个周期后的变化
pct_change() 方法支持 periods 参数指定计算变化的周期数,以及 fill_method 参数处理缺失值。
协方差计算
协方差衡量两个变量的联合变化程度:
s1 = pd.Series(np.random.randn(1000))
s2 = pd.Series(np.random.randn(1000))
print(s1.cov(s2)) # 两个Series的协方差
# DataFrame协方差矩阵
frame = pd.DataFrame(np.random.randn(1000, 5),
columns=['a', 'b', 'c', 'd', 'e'])
print(frame.cov())
注意事项:
- 默认排除缺失值
- 结果矩阵可能不是正定的
- 支持
min_periods参数指定最小观测数
相关性计算
Pandas 支持多种相关性计算方法:
frame = pd.DataFrame(np.random.randn(1000, 5),
columns=['a', 'b', 'c', 'd', 'e'])
# 三种相关计算方法
print(frame['a'].corr(frame['b'])) # 默认Pearson
print(frame['a'].corr(frame['b'], method='spearman')) # Spearman
print(frame.corr()) # 整个DataFrame的相关矩阵
支持的相关方法:
- pearson(默认):标准相关系数
- kendall:Kendall Tau 相关系数
- spearman:Spearman 秩相关系数
高级特性:Pandas 0.24.0+ 支持自定义相关函数:
def histogram_intersection(a, b):
return np.minimum(np.true_divide(a, a.sum()),
np.true_divide(b, b.sum())).sum()
frame.corr(method=histogram_intersection)
数据排名
rank() 方法提供数据排名功能:
s = pd.Series(np.random.randn(5), index=list('abcde'))
s['d'] = s['b'] # 创建平局
print(s.rank()) # 默认平均排名
df = pd.DataFrame(np.random.randn(10, 6))
df[4] = df[2][:5] # 创建平局
print(df.rank(axis=1)) # 按行排名
排名方法选项:
- average:平局取平均(默认)
- min:平局取最小排名
- max:平局取最大排名
- first:按出现顺序排名
窗口函数
窗口函数是时间序列分析的重要工具,Pandas 提供了强大的窗口计算功能。
基本窗口操作
s = pd.Series(np.random.randn(1000),
index=pd.date_range('1/1/2000', periods=1000))
s = s.cumsum()
# 创建60天的滚动窗口
r = s.rolling(window=60)
print(r.mean()) # 计算滚动均值
窗口函数支持参数:
- window:窗口大小
- min_periods:最小非空观测数
- center:是否居中标签
窗口统计方法
Pandas 提供丰富的窗口统计方法:
| 方法 | 描述 |
|---|---|
| count() | 非空观测数 |
| sum() | 求和 |
| mean() | 均值 |
| median() | 中位数 |
| min() | 最小值 |
| max() | 最大值 |
| std() | 标准差 |
| var() | 方差 |
| skew() | 偏度 |
| kurt() | 峰度 |
| quantile() | 分位数 |
| apply() | 自定义函数 |
| cov() | 协方差 |
| corr() | 相关系数 |
高级窗口应用
自定义窗口函数:
def mad(x): # 平均绝对偏差
return np.fabs(x - x.mean()).mean()
s.rolling(window=60).apply(mad, raw=True)
加权窗口:
ser = pd.Series(np.random.randn(10),
index=pd.date_range('1/1/2000', periods=10))
# 三角加权窗口
print(ser.rolling(window=5, win_type='triang').mean())
# 高斯加权窗口
print(ser.rolling(window=5, win_type='gaussian').mean(std=0.1))
支持多种窗口类型:boxcar, triang, blackman, hamming, bartlett 等。
时间感知滚动窗口
Pandas 支持基于时间的滚动窗口:
dft = pd.DataFrame({'B': [0, 1, 2, np.nan, 4]},
index=pd.date_range('20130101 09:00:00',
periods=5,
freq='s'))
print(dft.rolling('2s').sum()) # 2秒滚动窗口
端点控制:
df = pd.DataFrame({'x': 1},
index=[pd.Timestamp('20130101 09:00:01'),
pd.Timestamp('20130101 09:00:02'),
pd.Timestamp('20130101 09:00:03'),
pd.Timestamp('20130101 09:00:04'),
pd.Timestamp('20130101 09:00:06')])
# 不同端点控制方式
df["right"] = df.rolling('2s', closed='right').x.sum() # 默认
df["both"] = df.rolling('2s', closed='both').x.sum()
df["left"] = df.rolling('2s', closed='left').x.sum()
df["neither"] = df.rolling('2s', closed='neither').x.sum()
居中窗口
ser.rolling(window=5).mean() # 默认右对齐
ser.rolling(window=5, center=True).mean() # 居中
总结
Pandas 的计算工具为数据分析提供了强大支持,从基本的统计函数到高级的窗口计算,覆盖了数据分析的常见需求。掌握这些工具可以显著提高数据处理效率和分析深度。
关键要点:
- 百分比变化、协方差和相关函数是基础统计分析的核心
- 窗口函数为时间序列分析提供灵活的计算方式
- 时间感知窗口和端点控制增强了时间序列处理的精确性
- 自定义函数扩展了分析的可能性
通过合理组合这些工具,可以构建复杂的数据分析流程,满足各种业务场景的需求。
登录后查看全文
热门项目推荐
PaddleOCR-VLPaddleOCR-VL 是一款顶尖且资源高效的文档解析专用模型。其核心组件为 PaddleOCR-VL-0.9B,这是一款精简却功能强大的视觉语言模型(VLM)。该模型融合了 NaViT 风格的动态分辨率视觉编码器与 ERNIE-4.5-0.3B 语言模型,可实现精准的元素识别。Python00- DDeepSeek-OCRDeepSeek-OCR是一款以大语言模型为核心的开源工具,从LLM视角出发,探索视觉文本压缩的极限。Python00
MiniCPM-V-4_5MiniCPM-V 4.5 是 MiniCPM-V 系列中最新且功能最强的模型。该模型基于 Qwen3-8B 和 SigLIP2-400M 构建,总参数量为 80 亿。与之前的 MiniCPM-V 和 MiniCPM-o 模型相比,它在性能上有显著提升,并引入了新的实用功能Python00
HunyuanWorld-Mirror混元3D世界重建模型,支持多模态先验注入和多任务统一输出Python00
MiniMax-M2MiniMax-M2是MiniMaxAI开源的高效MoE模型,2300亿总参数中仅激活100亿,却在编码和智能体任务上表现卓越。它支持多文件编辑、终端操作和复杂工具链调用Jinja00
Spark-Scilit-X1-13B科大讯飞Spark Scilit-X1-13B基于最新一代科大讯飞基础模型,并针对源自科学文献的多项核心任务进行了训练。作为一款专为学术研究场景打造的大型语言模型,它在论文辅助阅读、学术翻译、英语润色和评论生成等方面均表现出色,旨在为研究人员、教师和学生提供高效、精准的智能辅助。Python00
GOT-OCR-2.0-hf阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile014
Spark-Chemistry-X1-13B科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
278
2.57 K
deepin linux kernel
C
24
6
React Native鸿蒙化仓库
JavaScript
223
302
Ascend Extension for PyTorch
Python
105
135
暂无简介
Dart
568
127
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
599
164
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.03 K
607
旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
1.03 K
448
openGauss kernel ~ openGauss is an open source relational database management system
C++
154
205
一个用于服务器应用开发的综合工具库。
- 零配置文件
- 环境变量和命令行参数配置
- 约定优于配置
- 深刻利用仓颉语言特性
- 只需要开发动态链接库,fboot负责加载、初始化并运行。
Cangjie
280
26