Stacks-core项目中的测试标签化改进方案
2025-06-26 23:58:19作者:董灵辛Dennis
背景介绍
在软件开发过程中,测试是保证代码质量的重要环节。stacks-core作为一个区块链项目,其测试体系面临着一些挑战:测试筛选不够灵活、难以按功能模块执行测试、开发环境友好度不足等问题。这些问题直接影响了开发效率和CI/CD流程的优化。
现有测试体系的问题分析
当前stacks-core项目的测试筛选主要依赖两种方式:
- 使用
#[ignore]
属性标记需要跳过的测试用例(如耗时测试或复杂集成测试) - 通过测试函数的完整路径名来精确选择或排除特定测试
这种机制存在明显不足:
- 无法基于功能上下文(如加密相关、签名相关、共识相关等)进行灵活筛选
- 难以定义合理的执行策略(独立运行、并行执行等)
- 对本地开发环境不够友好
- 与CI/CD流程的集成不够顺畅
解决方案设计
核心思路
引入一个名为testag
的专用crate,通过过程宏实现测试标签化功能。该方案具有以下特点:
- 标签配置集中管理:通过Cargo.toml文件统一管理允许使用的标签集合
- 简单易用的标注语法:使用属性宏轻松为测试函数添加标签
- 运行时筛选:避免因改变筛选条件而触发重新编译
- 兼容性设计:支持标准测试框架和主流测试宏(如tokio、should_panic等)
技术实现细节
方案采用了一种巧妙的名称转换机制:将测试函数转换为模块结构,并将标签信息编码到模块路径中。例如:
原始测试函数:
fn test_hello()
添加"fast"标签后转换为:
test_hello::t::fast::t
这种转换保持了原始测试路径的同时,嵌入了标签信息,形成了独特的模式:t::tag1::tag2::tag3::t
。这种结构既便于模式匹配,又能有效避免命名冲突。
实际应用示例
标签配置
在Cargo.toml中定义允许使用的标签集合:
[package.metadata.testag]
allowed = ["fast", "slow", "crypto"]
测试标注
在测试代码中使用标签:
#[tag(fast)]
#[test]
fn test_quick() { assert!(true); }
#[tag(fast, crypto)]
#[test]
fn test_quick_btc() { assert!(true); }
测试执行
- 使用cargo test筛选快速测试:
cargo test :fast:
- 使用cargo nextest进行复杂筛选:
cargo nextest --filter-expr 'test(:slow:) and test(:crypto:)'
- 通过配置文件定义测试profile:
[profile.btcslow]
default-filter = "test(:slow:) and test(:crypto:)"
方案优势与价值
- 提升开发体验:开发者可以轻松筛选相关测试,提高本地开发效率
- 优化CI/CD流程:支持复杂的测试筛选逻辑,便于构建不同的测试场景
- 维护成本低:标签集中管理,避免标签滥用和拼写错误
- 兼容性强:与现有测试工具链无缝集成,无需改变开发习惯
总结
stacks-core项目通过引入测试标签化系统,有效解决了测试筛选不灵活的问题。该方案不仅提升了开发效率,还为持续集成流程提供了更多可能性。这种基于宏和模块路径转换的技术实现,既保持了Rust语言的特性,又提供了简洁易用的接口,是测试体系优化的一个典范。
对于其他Rust项目而言,这种测试标签化思路同样具有参考价值,特别是在需要复杂测试筛选和分类的场景下。项目团队已经在一个名为pinny-rs的仓库中实现了这一方案,为后续在stacks-core中的集成奠定了基础。
登录后查看全文
热门项目推荐
相关项目推荐
HunyuanImage-3.0
HunyuanImage-3.0 统一多模态理解与生成,基于自回归框架,实现文本生成图像,性能媲美或超越领先闭源模型00ops-transformer
本项目是CANN提供的transformer类大模型算子库,实现网络在NPU上加速计算。C++046Hunyuan3D-Part
腾讯混元3D-Part00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0290Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
168
2.05 K

本仓将为广大高校开发者提供开源实践和创新开发平台,收集和展示openHiTLS示例代码及创新应用,欢迎大家投稿,让全世界看到您的精巧密码实现设计,也让更多人通过您的优秀成果,理解、喜爱上密码技术。
C
101
610

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
199
279

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
954
563

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
78
71

🔥LeetCode solutions in any programming language | 多种编程语言实现 LeetCode、《剑指 Offer(第 2 版)》、《程序员面试金典(第 6 版)》题解
Java
60
17

基于golang开发的网关。具有各种插件,可以自行扩展,即插即用。此外,它可以快速帮助企业管理API服务,提高API服务的稳定性和安全性。
Go
22
0