OpenVINO Model Zoo中gaze_estimation_demo输出结果保存与处理指南
在计算机视觉应用中,视线估计是一个重要的研究方向,OpenVINO Model Zoo提供的gaze_estimation_demo演示程序能够实时检测人脸并估计视线方向。本文将详细介绍如何保存该demo的输出结果,以及如何处理三维视线向量数据。
输出结果保存方法
gaze_estimation_demo运行时会在控制台输出包括头部姿态角度和视线向量在内的多种信息。虽然demo本身没有提供直接的参数来保存这些数据,但可以通过以下方法实现:
-
重定向标准输出:最简单的方法是将命令行输出重定向到文件。在Linux系统中,可以在命令后添加
> output.txt将输出保存到文本文件。 -
修改源代码:如果需要更结构化的数据存储,可以修改demo的源代码,添加文件写入功能。主要需要修改结果输出部分的代码,将数据写入CSV或JSON等格式的文件。
三维视线向量到二维角度的转换
视线估计模型输出的是三维空间中的向量(x,y,z),表示视线方向。在实际应用中,我们经常需要将其转换为更直观的二维角度表示。转换方法如下:
-
基本原理:三维向量到二维角度的转换本质上是将向量投影到特定平面(通常是水平面和垂直面)上,然后计算投影向量与参考轴之间的角度。
-
具体计算:
- 水平角度(偏航角):arctan(x/z)
- 垂直角度(俯仰角):arctan(y/z)
-
实现示例:可以参考demo源代码中的实现方式,其中包含了将三维向量转换为屏幕坐标的逻辑。核心思想是使用反三角函数计算向量分量之间的角度关系。
实际应用建议
-
数据后处理:保存的原始数据可能包含噪声,建议添加简单的滤波算法(如移动平均)来平滑视线轨迹。
-
坐标系转换:注意demo使用的坐标系定义,确保转换后的角度符合你的应用场景需求。通常,x轴向右,y轴向下,z轴向屏幕内。
-
性能考量:如果需要在嵌入式设备上运行,可以考虑优化数据保存频率,避免因IO操作影响实时性能。
通过以上方法,开发者可以有效地保存和处理gaze_estimation_demo的输出结果,为后续的视线追踪、注意力分析等应用打下基础。
AutoGLM-Phone-9BAutoGLM-Phone-9B是基于AutoGLM构建的移动智能助手框架,依托多模态感知理解手机屏幕并执行自动化操作。Jinja00
Kimi-K2-ThinkingKimi K2 Thinking 是最新、性能最强的开源思维模型。从 Kimi K2 开始,我们将其打造为能够逐步推理并动态调用工具的思维智能体。通过显著提升多步推理深度,并在 200–300 次连续调用中保持稳定的工具使用能力,它在 Humanity's Last Exam (HLE)、BrowseComp 等基准测试中树立了新的技术标杆。同时,K2 Thinking 是原生 INT4 量化模型,具备 256k 上下文窗口,实现了推理延迟和 GPU 内存占用的无损降低。Python00
GLM-4.6V-FP8GLM-4.6V-FP8是GLM-V系列开源模型,支持128K上下文窗口,融合原生多模态函数调用能力,实现从视觉感知到执行的闭环。具备文档理解、图文生成、前端重构等功能,适用于云集群与本地部署,在同类参数规模中视觉理解性能领先。Jinja00
HunyuanOCRHunyuanOCR 是基于混元原生多模态架构打造的领先端到端 OCR 专家级视觉语言模型。它采用仅 10 亿参数的轻量化设计,在业界多项基准测试中取得了当前最佳性能。该模型不仅精通复杂多语言文档解析,还在文本检测与识别、开放域信息抽取、视频字幕提取及图片翻译等实际应用场景中表现卓越。00
GLM-ASR-Nano-2512GLM-ASR-Nano-2512 是一款稳健的开源语音识别模型,参数规模为 15 亿。该模型专为应对真实场景的复杂性而设计,在保持紧凑体量的同时,多项基准测试表现优于 OpenAI Whisper V3。Python00
GLM-TTSGLM-TTS 是一款基于大语言模型的高质量文本转语音(TTS)合成系统,支持零样本语音克隆和流式推理。该系统采用两阶段架构,结合了用于语音 token 生成的大语言模型(LLM)和用于波形合成的流匹配(Flow Matching)模型。 通过引入多奖励强化学习框架,GLM-TTS 显著提升了合成语音的表现力,相比传统 TTS 系统实现了更自然的情感控制。Python00
Spark-Formalizer-X1-7BSpark-Formalizer 是由科大讯飞团队开发的专用大型语言模型,专注于数学自动形式化任务。该模型擅长将自然语言数学问题转化为精确的 Lean4 形式化语句,在形式化语句生成方面达到了业界领先水平。Python00