timing-asgi:为你的Python ASGI应用添加计时中间件
2024-06-23 18:11:44作者:范垣楠Rhoda
timing-asgi:为你的Python ASGI应用添加计时中间件
项目介绍
timing-asgi
是一个针对ASGI的应用的计时中间件,旨在自动化监控ASGI端点的性能。它最初由GRID公司开发,并用于其基于Python和ASGI框架Starlette构建的后端服务,与云监控服务如Datadog集成,提供statsd基础的度量统计。
项目技术分析
该库支持ASGI3标准,通过安装pip install timing-asgi
即可轻松部署。TimingMiddleware
是核心组件,它可以插入到ASGI应用程序中,记录每个请求处理的时间,并将这些数据暴露给TimingClient
。TimingClient
可以定制化以满足不同的数据收集需求,例如在上述示例中,数据被打印到控制台,但在实际生产环境中,可能会发送到像Datadog这样的监控系统。
timing-asgi
还提供了诸如StarletteScopeToName
这样的工具,它们可以帮助转换ASGI范围信息到可读的指标名称,以便更好地理解并分析数据。
项目及技术应用场景
- Web应用性能监测:对于任何基于ASGI(如FastAPI或Quart)构建的高性能Python Web服务,
timing-asgi
能帮助开发者实时了解HTTP请求的响应时间,从而优化代码性能。 - 故障排查:当遇到性能下降或异常问题时,通过查看计时数据,可以快速定位潜在的问题点。
- 持续集成/持续交付(CI/CD):在自动化测试阶段,可以利用这些度量来确保新代码引入的改动没有导致性能退步。
项目特点
- 轻量级:设计简洁,易于集成到现有的ASGI应用中,无需大量额外的依赖。
- 高度可定制:可以自定义
TimingClient
以适应不同的监控解决方案,如Prometheus、Elasticsearch或其他日志系统。 - 灵活的指标命名:允许通过
metric_namer
参数设置如何转换ASGI范围信息为有意义的指标名称。 - 兼容性:虽然主要面向ASGI3,但对ASGI2的支持也在旧版本中得到维护。
使用示例
以下是一个简单的使用timing-asgi
的例子:
import uvicorn
from starlette.applications import Starlette
from starlette.responses import PlainTextResponse
from timing_asgi import TimingMiddleware, TimingClient
from timing_asgi.integrations import StarletteScopeToName
app = Starlette()
@app.route("/")
async def homepage(request):
return PlainTextResponse("hello world")
app.add_middleware(
TimingMiddleware,
client=PrintTimings(), # 自定义类,实现数据处理
metric_namer=StarletteScopeToName(prefix="myapp", starlette_app=app)
)
if __name__ == "__main__":
uvicorn.run(app)
运行这个例子,你可以看到每个请求处理的时间被打印出来,这对于跟踪性能非常有帮助。
总结,如果你正在寻找一个简单而强大的工具来监控你的ASGI应用的性能,那么timing-asgi
无疑是一个值得尝试的选择。立即安装并体验它带来的好处吧!
登录后查看全文
热门项目推荐
Hunyuan3D-Part
腾讯混元3D-Part00Hunyuan3D-Omni
腾讯混元3D-Omni:3D版ControlNet突破多模态控制,实现高精度3D资产生成00GitCode-文心大模型-智源研究院AI应用开发大赛
GitCode&文心大模型&智源研究院强强联合,发起的AI应用开发大赛;总奖池8W,单人最高可得价值3W奖励。快来参加吧~0277community
本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息011Hunyuan3D-2
Hunyuan3D 2.0:高分辨率三维生成系统,支持精准形状建模与生动纹理合成,简化资产再创作流程。Python00Spark-Chemistry-X1-13B
科大讯飞星火化学-X1-13B (iFLYTEK Spark Chemistry-X1-13B) 是一款专为化学领域优化的大语言模型。它由星火-X1 (Spark-X1) 基础模型微调而来,在化学知识问答、分子性质预测、化学名称转换和科学推理方面展现出强大的能力,同时保持了强大的通用语言理解与生成能力。Python00GOT-OCR-2.0-hf
阶跃星辰StepFun推出的GOT-OCR-2.0-hf是一款强大的多语言OCR开源模型,支持从普通文档到复杂场景的文字识别。它能精准处理表格、图表、数学公式、几何图形甚至乐谱等特殊内容,输出结果可通过第三方工具渲染成多种格式。模型支持1024×1024高分辨率输入,具备多页批量处理、动态分块识别和交互式区域选择等创新功能,用户可通过坐标或颜色指定识别区域。基于Apache 2.0协议开源,提供Hugging Face演示和完整代码,适用于学术研究到工业应用的广泛场景,为OCR领域带来突破性解决方案。00- HHowToCook程序员在家做饭方法指南。Programmer's guide about how to cook at home (Chinese only).Dockerfile09
- PpathwayPathway is an open framework for high-throughput and low-latency real-time data processing.Python00
热门内容推荐
1 freeCodeCamp猫照片应用教程中的HTML注释测试问题分析2 freeCodeCamp全栈开发课程中React实验项目的分类修正3 freeCodeCamp课程视频测验中的Tab键导航问题解析4 freeCodeCamp音乐播放器项目中的函数调用问题解析5 freeCodeCamp论坛排行榜项目中的错误日志规范要求6 freeCodeCamp JavaScript高阶函数中的对象引用陷阱解析7 freeCodeCamp全栈开发课程中React组件导出方式的衔接问题分析8 freeCodeCamp英语课程视频测验选项与提示不匹配问题分析9 freeCodeCamp课程页面空白问题的技术分析与解决方案10 freeCodeCamp博客页面工作坊中的断言方法优化建议
最新内容推荐
Windows Server 2016 .NET Framework 3.5 SXS文件下载与安装完整指南 小米Mini R1C MT7620爱快固件下载指南:解锁企业级网络管理功能 XMODEM协议C语言实现:嵌入式系统串口文件传输的经典解决方案 SAP S4HANA物料管理资源全面解析:从入门到精通的完整指南 VSdebugChkMatch.exe:专业PDB签名匹配工具全面解析与使用指南 瀚高迁移工具migration-4.1.4:企业级数据库迁移的智能解决方案 OMNeT++中文使用手册:网络仿真的终极指南与实用教程 SteamVR 1.2.3 Unity插件:兼容Unity 2019及更低版本的VR开发终极解决方案 全球36个生物多样性热点地区KML矢量图资源详解与应用指南 Windows版Redis 5.0.14下载资源:高效内存数据库的完美Windows解决方案
项目优选
收起

deepin linux kernel
C
22
6

OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
154
1.98 K

本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
508
44

Nop Platform 2.0是基于可逆计算理论实现的采用面向语言编程范式的新一代低代码开发平台,包含基于全新原理从零开始研发的GraphQL引擎、ORM引擎、工作流引擎、报表引擎、规则引擎、批处理引引擎等完整设计。nop-entropy是它的后端部分,采用java语言实现,可选择集成Spring框架或者Quarkus框架。中小企业可以免费商用
Java
8
0

React Native鸿蒙化仓库
C++
194
279

旨在打造算法先进、性能卓越、高效敏捷、安全可靠的密码套件,通过轻量级、可剪裁的软件技术架构满足各行业不同场景的多样化要求,让密码技术应用更简单,同时探索后量子等先进算法创新实践,构建密码前沿技术底座!
C
992
395

🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
940
554

本项目是CANN开源社区的核心管理仓库,包含社区的治理章程、治理组织、通用操作指引及流程规范等基础信息
339
11

openGauss kernel ~ openGauss is an open source relational database management system
C++
146
191

为非计算机科班出身 (例如财经类高校金融学院) 同学量身定制,新手友好,让学生以亲身实践开源开发的方式,学会使用计算机自动化自己的科研/创新工作。案例以量化投资为主线,涉及 Bash、Python、SQL、BI、AI 等全技术栈,培养面向未来的数智化人才 (如数据工程师、数据分析师、数据科学家、数据决策者、量化投资人)。
Python
75
70