Style Dictionary多品牌主题构建中的令牌引用问题解析
2025-06-15 06:00:32作者:秋泉律Samson
问题背景
在使用Style Dictionary构建多品牌设计系统时,开发者经常会遇到令牌引用错误的问题。典型表现为构建过程中出现"Some token references could not be found"的错误提示,导致构建失败。这种情况通常发生在尝试为不同品牌和主题创建独立但又有共享引用的设计令牌体系时。
核心问题分析
错误的令牌引用结构
在示例中,开发者尝试为两个品牌(brand-a和brand-b)创建基础令牌,然后为每个品牌创建自定义主题(theme-a和theme-b)。问题出在主题文件中引用品牌令牌的方式:
"primaryDivider": {
"$value": "{brand-a.brand-a/palette/light/divider}"
}
这种引用结构存在几个关键问题:
- 命名空间冲突:同时使用了点表示法(brand-a.)和斜杠表示法(brand-a/palette/light/divider)混合的引用方式
- 跨品牌引用:主题文件试图引用可能不存在的品牌令牌
- 构建隔离:每个Style Dictionary实例只加载特定品牌的令牌,无法访问其他品牌的令牌
构建流程缺陷
构建脚本为每个品牌创建独立的Style Dictionary实例:
['brand-a', 'brand-b'].map(function (brand) {
['web', 'css'].map(function (platform) {
const sd = new StyleDictionary(getStyleDictionaryConfig(brand, platform));
sd.buildPlatform(platform);
});
});
这种实现方式导致:
- 构建brand-a时,brand-b的令牌不可见
- 构建brand-b时,brand-a的令牌不可见
- 主题文件中的跨品牌引用自然就会失败
解决方案
正确的令牌引用模式
- 统一引用格式:选择点表示法或斜杠表示法中的一种,不要混用
- 分层引用结构:建立清晰的令牌层级关系,例如:
"primaryDivider": { "$value": "{palette.light.divider}" }
改进的构建策略
- 集中式构建:创建一个包含所有品牌令牌的Style Dictionary实例
- 使用别名系统:为不同品牌的相同概念创建别名,而不是直接引用
- 主题切换机制:通过变量或环境变量控制当前激活的主题
代码结构优化建议
// 改进后的构建配置
function getStyleDictionaryConfig(theme) {
return {
include: [`tokens/core/**/*.json`],
source: [
`tokens/brands/${theme.brand}/**/*.json`,
`tokens/themes/${theme.name}/**/*.json`
],
// ...其他配置
};
}
最佳实践
- 核心令牌分离:将与品牌无关的基础设计令牌放在核心目录中
- 品牌特定覆盖:品牌目录只包含需要覆盖核心值的令牌
- 主题作为扩展:主题只修改品牌令牌的值,不改变令牌结构
- 引用限制:避免跨品牌引用,使用抽象层隔离品牌差异
总结
在Style Dictionary中实现多品牌多主题系统时,关键在于建立清晰的令牌层级结构和合理的构建流程。令牌引用应当遵循一致的模式,避免跨品牌直接引用。通过分层抽象和适当的构建策略,可以创建灵活且可维护的多品牌设计系统。记住,主题应当只改变令牌的值,而不改变令牌的结构和引用关系,这样才能确保系统的可扩展性和一致性。
登录后查看全文
热门项目推荐
相关项目推荐
Kimi-K2.5Kimi K2.5 是一款开源的原生多模态智能体模型,它在 Kimi-K2-Base 的基础上,通过对约 15 万亿混合视觉和文本 tokens 进行持续预训练构建而成。该模型将视觉与语言理解、高级智能体能力、即时模式与思考模式,以及对话式与智能体范式无缝融合。Python00- QQwen3-Coder-Next2026年2月4日,正式发布的Qwen3-Coder-Next,一款专为编码智能体和本地开发场景设计的开源语言模型。Python00
xw-cli实现国产算力大模型零门槛部署,一键跑通 Qwen、GLM-4.7、Minimax-2.1、DeepSeek-OCR 等模型Go06
PaddleOCR-VL-1.5PaddleOCR-VL-1.5 是 PaddleOCR-VL 的新一代进阶模型,在 OmniDocBench v1.5 上实现了 94.5% 的全新 state-of-the-art 准确率。 为了严格评估模型在真实物理畸变下的鲁棒性——包括扫描伪影、倾斜、扭曲、屏幕拍摄和光照变化——我们提出了 Real5-OmniDocBench 基准测试集。实验结果表明,该增强模型在新构建的基准测试集上达到了 SOTA 性能。此外,我们通过整合印章识别和文本检测识别(text spotting)任务扩展了模型的能力,同时保持 0.9B 的超紧凑 VLM 规模,具备高效率特性。Python00
Baichuan-M3-235BBaichuan-M3 是百川智能推出的新一代医疗增强型大型语言模型,是继 Baichuan-M2 之后的又一重要里程碑。Python00
VLOOKVLOOK™ 是优雅好用的 Typora/Markdown 主题包和增强插件。 VLOOK™ is an elegant and practical THEME PACKAGE × ENHANCEMENT PLUGIN for Typora/Markdown.Less00
热门内容推荐
最新内容推荐
Degrees of Lewdity中文汉化终极指南:零基础玩家必看的完整教程Unity游戏翻译神器:XUnity Auto Translator 完整使用指南PythonWin7终极指南:在Windows 7上轻松安装Python 3.9+终极macOS键盘定制指南:用Karabiner-Elements提升10倍效率Pandas数据分析实战指南:从零基础到数据处理高手 Qwen3-235B-FP8震撼升级:256K上下文+22B激活参数7步搞定机械键盘PCB设计:从零开始打造你的专属键盘终极WeMod专业版解锁指南:3步免费获取完整高级功能DeepSeek-R1-Distill-Qwen-32B技术揭秘:小模型如何实现大模型性能突破音频修复终极指南:让每一段受损声音重获新生
项目优选
收起
deepin linux kernel
C
27
11
OpenHarmony documentation | OpenHarmony开发者文档
Dockerfile
539
3.76 K
Ascend Extension for PyTorch
Python
349
414
本项目是CANN提供的数学类基础计算算子库,实现网络在NPU上加速计算。
C++
889
609
openEuler内核是openEuler操作系统的核心,既是系统性能与稳定性的基石,也是连接处理器、设备与服务的桥梁。
C
338
185
openJiuwen agent-studio提供零码、低码可视化开发和工作流编排,模型、知识库、插件等各资源管理能力
TSX
986
252
openGauss kernel ~ openGauss is an open source relational database management system
C++
169
233
暂无简介
Dart
778
193
华为昇腾面向大规模分布式训练的多模态大模型套件,支撑多模态生成、多模态理解。
Python
114
140
🎉 (RuoYi)官方仓库 基于SpringBoot,Spring Security,JWT,Vue3 & Vite、Element Plus 的前后端分离权限管理系统
Vue
1.35 K
758